Species-specific primers for Zoophthora radicans and Pandora bluckii were developed. To achieve this, partial sequences of DNA that encode for rRNA, more specifically, the ITS region (rDNA-ITS) were obtained from different isolates and analysed. Seven Z. radicans isolates (four from P. xylostella, and three from other lepidopteran hosts) and one P. blunckii isolate (from P. xylostella) were used. These isolates were selected based on PCR-RFLP patterns obtained from 22 isolates of P. blunckii and 39 isolates of Z. radicans. All P. blunckii isolates were from the same host (P. xylostella); 20 isolates were from Mexico, one from the Philippines, and one from Germany. The Z. radicans isolates were more diverse in geographical origin (Mexico, Kenya, Japan, New Zealand, Australia, Taiwan, Philippines, Malaysia, Uruguay, France, USA, Poland, Indonesia, Switzerland, Israel, China, and Denmark) and host origin (Lepidoptera, Hemiptera, Hymentoptera, and Diptera). Using conventional PCR, each pair of species-specific primers successfully detected each species of fungus from DNA extracted from infected host larvae either single- or dual-inoculated with both fungal species. The PCR-RFLP analysis also showed that Z. radicans was genetically more diverse than P. blunckii, although only a limited number of P. blunckii isolates from one country were considered. There was no direct relationship between genetic diversity and host or geographical origin. The relationship between genetic variation within both fungal species and host specificity or ecological adaptation is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mycres.2008.04.006 | DOI Listing |
Neotrop Entomol
December 2012
Postgrado en Fitosanidad-Entomología y Acarología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de Mexico, Mexico.
The effect of order of inoculation of Pandora blunckii and Zoophthora radicans co-infecting Plutella xylostella (L.) (Lepidoptera: Plutellidae) was investigated. After co-inoculation, the proportion of larvae infected by either species was greatly reduced compared to when they were inoculated singly.
View Article and Find Full Text PDFMycol Res
November 2009
Department of Plant and Invertebrate Ecology, Harpenden, Hertfordshire, UK.
The entomopathogenic fungi Zoophthora radicans and Pandora blunckii co-occur in field populations of Plutella xylostella and, therefore, are likely to interact during the infection process. We have investigated the possible outcomes of these interactions in the laboratory. Using four isolates, two of each fungal species, inter-specific interaction experiments were done in Petri dishes and on intact plants.
View Article and Find Full Text PDFMycol Res
October 2008
Department of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
Species-specific primers for Zoophthora radicans and Pandora bluckii were developed. To achieve this, partial sequences of DNA that encode for rRNA, more specifically, the ITS region (rDNA-ITS) were obtained from different isolates and analysed. Seven Z.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!