Leishmania has developed mechanisms to escape from immune defense of phagocytes by inhibiting microbicidal oxygen and nitrogen radicals. This work evaluated the influence of meglumine antimonate (Sb(V)) on the phagocyte functions involved in the defense against leishmania, through phagocytosis, reactive oxygen, nitrogen and TNF-alpha production in the absence or presence of the drug, in vitro. Meglumine antimonate increased the number of Saccharomyces cerevisiae ingested by monocyte and the percentage of these cells engaged in phagocytosis, which resulted in an increase of the monocyte phagocytic index by 158%. Meglumine antimonate also increased the number of S. cerevisiae ingested by neutrophil and the percentage of these cells engaged in phagocytosis, increasing the neutrophil phagocytic index by 219%. The median of percent reduction of NBT was significantly increased after treatment with this pentavalent antimony from 89.5% to 96.5%. Meglumine antimonate had no influence on nitric oxide production, but it significantly increased the mean+/-SEM production of tumor necrosis factor by 230%. However, monocytes incubated with TNF significantly increased NO production. This antimonial increased the phagocytic capacity of monocytes and neutrophils and enhanced superoxide anion production by phagocytes, which represent the first line of defense against the parasite. Furthermore, meglumine antimonate increased TNF, and via this cytokine, it may also indirectly increase NO production. Our data suggest that these immunomodulatory effects of meglumine antimonate may play a role in fighting leishmania and that meglumine antimonate provides the phagocytes with a mechanism that prevents leishmania from escaping immune defense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2008.07.011DOI Listing

Publication Analysis

Top Keywords

meglumine antimonate
32
antimonate increased
12
meglumine
8
superoxide anion
8
production
8
tnf-alpha production
8
nitric oxide
8
oxide production
8
production phagocytes
8
immune defense
8

Similar Publications

This study aims to identify the most sensitive colorimetric test for assessing intracellular drug susceptibility of Leishmania tropica to conventional antileishmanial drugs. To this end, the efficacy of four colorimetric methods-MTT, XTT, MTS, and WST-8-was compared using reference L. tropica promastigotes.

View Article and Find Full Text PDF

Background: Meglumine antimoniate is used to treat canine leishmaniosis. In humans, it has been associated with pancreatitis. Although a few case reports have described acute pancreatitis secondary to antimonial treatment in dogs, some studies have concluded that pancreatitis is not an adverse effect of this medication.

View Article and Find Full Text PDF

The current standard treatment for canine leishmaniosis (CanL), N-methylglucamine antimoniate (MGA) given with allopurinol, is not fully effective and may cause adverse effects and drug resistance. In vitro and in vivo studies have shown that nucleotides, administered alone or with AHCC, offer benefits in the treatment of CanL. This study examines the effects of a new immunomodulatory treatment protocol in which dietary nucleotides and AHCC are added to the recommended standard treatment.

View Article and Find Full Text PDF

Background: In Europe, canine leishmaniasis is commonly caused by Leishmania infantum. Allopurinol is the main drug for long-term management of the disease, and clinical relapses of L. infantum infection treated with this drug are described.

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous leishmaniasis (CL) is linked to a positive skin test (LST) that indicates the presence of immune T cells specific to disease antigens, with this study focusing on the differences between LST+ and LST- patients.
  • LST- patients showed larger lesions, a longer duration of illness, more treatment failures with meglumine antimonate, and higher healing times compared to LST+ patients.
  • The study suggests that LST- patients have an impaired Th1 immune response, characterized by higher parasite loads, lower granuloma frequency, increased CD8+ T cells, and excess Granzyme B production, leading to more severe disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!