Objective: Ras proteins are known to affect cellular growth and function. The influence of the prenylation status of Ras on the observed changes in endothelial cell growth under high glucose conditions has not previously been examined.

Methods: Human umbilical vein endothelial cells were exposed to normal or high glucose conditions for 72 h. They were then examined for proliferative and hypertrophic effects, transforming growth factor beta(1) (TGFbeta(1)) release, and phosphorylated p38 expression. The importance of prenylation was explored by the addition of mevalonate, isoprenoids or farnesyltransferase inhibitors to control the high glucose media and by measuring changes induced by high glucose and exogenous TGFbeta(1) in Ras prenylation and farnesyltransferase activity. Kidneys from diabetic rats treated with atorvastatin were also compared to specimens from untreated animals and the expression of the Ras effector p-Akt examined.

Results: High glucose conditions caused a reduction in cell number. This was reversed in the presence of mevalonate or farnesylpyrophosphate (FPP), suggesting that the cell growth abnormalities observed are due to high glucose induced inhibition of the mevalonate pathway and subsequent prenylation of proteins. Endothelial cells exposed to high glucose increased their secretion of TGFbeta(1) and the phosphorylation of p38 both of which were reversed by concurrent exposure to FPP. A reduction in farnesyltransferase activity was observed after exposure to both high glucose and TGFbeta(1). Exposure to a farnesyltransferase inhibitor in control conditions mimicked the growth response observed with high glucose exposure and prenylated Ras was reduced by exposure to both high glucose and TGFbeta(1). Finally, interruption of the mevalonate pathway with a statin reduced the expression of p-Akt in diabetic rat kidneys.

Conclusion: This study demonstrates that high glucose induced significant alterations in endothelial cell growth by inhibition of the mevalonate pathway, which subsequently mediates the increase in TGFbeta(1) and inhibition of Ras prenylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2008.07.007DOI Listing

Publication Analysis

Top Keywords

high glucose
48
cell growth
16
mevalonate pathway
16
high
12
glucose induced
12
endothelial cell
12
ras prenylation
12
glucose conditions
12
glucose
11
growth inhibition
8

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.

View Article and Find Full Text PDF

[Research advances in maturity-onset diabetes of the young].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Endocrine, Genetics and Metabolism, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710003, China.

Maturity-onset diabetes of the young (MODY) is a special type of diabetes characterized by clinical features including early onset of diabetes (before 30 years of age), autosomal dominant inheritance, impaired glucose-induced insulin secretion, and hyperglycemia. So far, 14 types of MODY have been reported, accounting for about 1%-5% of the patients with diabetes. MODY often presents with an insidious onset, and although 14 subtypes have been identified for MODY, it is frequently misdiagnosed as type 1 or type 2 diabetes due to overlapping clinical features and high costs and limitations of genetic testing.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!