Discovered for their ability to deacetylate histones and repress transcription, HDACs are a promising target for therapy of human diseases. The class II HDACs are mainly involved in developmental and differentiation processes, such as myogenesis. We report here that class I and class II HDAC inhibitors such as SAHA or the class II selective inhibitor MC1568 induce down-regulation of class II HDACs in human cells. In particular, both SAHA and MC1568 induce HDAC 4 down-regulation by increasing its specific sumoylation followed by activation of proteasomal pathways of degradation. Sumoylation that corresponds to HDAC 4 nuclear localization results in a transient increase of the HDAC 4 repressive action on target genes such as RARalpha and TNFalpha. The HDAC 4 degradation that follows to its sumoylation results in gene target activation. Silencing of the RANBP2 E3 ligase reverts HDAC 4 repression by blocking its own sumoylation. These findings identify a crosstalk occurring between acetylation, deacetylation and sumoylation pathways and suggest that class II specific HDAC inhibitors may affect different epigenetic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2008.07.007DOI Listing

Publication Analysis

Top Keywords

hdac
8
class hdacs
8
hdac inhibitors
8
mc1568 induce
8
degradation sumoylation
8
class
6
sumoylation
5
hdac-class specific
4
specific inhibition
4
inhibition involves
4

Similar Publications

A cis-regulatory element controls expression of histone deacetylase 9 to fine-tune inflammasome-dependent chronic inflammation in atherosclerosis.

Immunity

January 2025

Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany. Electronic address:

Common genetic variants in a conserved cis-regulatory element (CRE) at histone deacetylase (HDAC)9 are a major risk factor for cardiovascular disease, including stroke and coronary artery disease. Given the consistency of this association and its proinflammatory properties, we examined the mechanisms whereby HDAC9 regulates vascular inflammation. HDAC9 bound and mediated deacetylation of NLRP3 in the NACHT and LRR domains leading to inflammasome activation and lytic cell death.

View Article and Find Full Text PDF

Introduction: The synergistic combination of histone deacetylase inhibitors and platinum-based medicines represents a promising therapeutic strategy to efficacy and overcome drug resistance in cancer therapy, necessitating a comprehensive understanding on their molecular interactions and clinical potential.

Areas Covered: The objective of presented review is to investigate the molecular pathways of platinum medicines and HDAC inhibitors. A comprehensive literature review from 2011 to 2024 was conducted across multiple databases like MEDLINE, PubMed, Google Scholar, Science Direct, Scopus and official websites of ClinicalTrial.

View Article and Find Full Text PDF

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!