PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca(2+) homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted in increased PON2 mRNA and protein levels. In contrast, when ER stress was caused by thapsigargin or A23187, we observed a Ca(2+)-dependent active degradation of PON2 mRNA, elicited by its 5'-untranslated region. In addition, thapsigargin and A23187 also induced PON2 protein degradation by a Ca(2+)-dependent calpain-mediated mechanism. Thus we provide evidence that independent mechanisms mediate the degradation of PON2 mRNA and protein after disturbance of Ca(2+) homoeostasis. Furthermore, because Ca(2+)-disturbance induces ER stress, but abrogates the otherwise protective function of PON2 against ER-stress-induced apoptosis, we propose that the underlying cause of ER stress determines the efficacy of putative cellular defence mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20080775 | DOI Listing |
Biol Pharm Bull
July 2023
Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University.
Hypercholesterolemia is a major complication of arteriosclerosis. Mast cells in arteriosclerosis plaques induce inflammatory reactions and promote arterial sclerosis. In this study, we evaluated the pharmacological effects of simvastatin (SV)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on the degranulation of rat basophilic leukemia (RBL)-2H3 cells, which are commonly used as mast cell models.
View Article and Find Full Text PDFInsect Mol Biol
February 2022
Department of Biology, National Museum of Natural Science, Taichung, Taiwan.
In the present study, the participation of protein kinase C (PKC) signalling in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in Bombyx prothoracic glands (PGs) is demonstrated and characterized. PTTH stimulated phosphorylation of a 37-kDa protein in Bombyx PGs both in vitro and in vivo, as recognized by a PKC substrate antibody. Treatment with either A23187 or thapsigargin also stimulated this 37-kDa protein phosphorylation.
View Article and Find Full Text PDFInsect Mol Biol
October 2021
Chung Hwa University of Medical Technology, Tainan, Taiwan.
It is well known that phosphorylation of extracellular signal-regulated kinase (ERK) is involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs). In the present study, we further investigated the downstream signalling pathways. Our results showed that PTTH stimulated p90 ribosomal S6 kinase (RSK) phosphorylation at Thr573 in Bombyx mori PGs both in vitro and in vivo.
View Article and Find Full Text PDFEur J Pharmacol
January 2021
Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA. Electronic address:
Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex.
View Article and Find Full Text PDFVirol Sin
August 2019
Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD) and it also causes severe neurologic complications in infected children. The interactions between some viruses and the host mitochondria are crucial for virus replication and pathogenicity. In this study, it was observed that EV-A71 infection resulted in a perinuclear redistribution of the mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!