Warfarin dosing and the promise of pharmacogenomics.

Curr Clin Pharmacol

Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.

Published: January 2007

Due to its narrow therapeutic index and substantial inter-patient variability in clinical response, warfarin represents an ideal drug candidate to benefit from the promise of pharmacogenomic-guided dosing strategies. Consistent with in vitro data, clinical studies have demonstrated that CYP2C9 polymorphisms significantly influence warfarin pharmacokinetics by reducing (S)-warfarin metabolic clearance, consequently lowering maintenance dose requirements and increasing the risk over-anticoagulation during the initiation phase of therapy. Recent data suggest that polymorphisms in genes encoding several pharmacodynamic determinants of the coagulation cascade may also influence warfarin's antithrombotic dose-response. Of these, VKORC1 polymorphisms account for a significant proportion of the inter-individual variability in warfarin dose requirements in all populations evaluated. Collectively, these data suggest that assessment of genetic polymorphisms affecting both warfarin pharmacokinetics and pharmacodynamics could help to predict warfarin dose requirements in patients. Therefore, the promise of pharmacogenomic-guided dosing as a useful strategy to improve clinical outcomes with warfarin therapy appears credible and warrants further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157488407779422276DOI Listing

Publication Analysis

Top Keywords

dose requirements
12
promise pharmacogenomic-guided
8
pharmacogenomic-guided dosing
8
warfarin pharmacokinetics
8
warfarin dose
8
warfarin
7
warfarin dosing
4
dosing promise
4
promise pharmacogenomics
4
pharmacogenomics narrow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!