The growth and differentiation of mesenchymal stem cells (MSCs) is controlled by various growth factors, the activities of which can be modulated by heparan sulfates (HSs). We have previously noted the necessity of sulfated glycosaminoglycans for the fibroblast growth factor type 2 (FGF-2)-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of HS to cultures of primary rat MSCs stimulates their proliferation, leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation, and osteogenic differentiation of rat bone marrow stem cells (rMSCs) when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. We show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth, resulting in the cells being unable to reach the critical density necessary to induce differentiation. Blocking FGFR1 signaling in postconfluent osteogenic cultures significantly increased calcium deposition. Taken together our data suggest that FGFR1 signaling plays an important role during osteogenic differentiation, first by stimulating cell growth that is closely followed by an inhibitory effect once the cells have reached confluence. It also confirms the importance of HS as a coreceptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2008.0157DOI Listing

Publication Analysis

Top Keywords

stem cells
12
differentiation
8
differentiation rat
8
mesenchymal stem
8
growth
8
growth differentiation
8
growth factors
8
osteogenic differentiation
8
cell growth
8
fgfr1 signaling
8

Similar Publications

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Background: Developing an optimal media for Vero cell lines is crucial as it directly influences cell survival, proliferation, and virus production. The use of serum in cell culture raises safety concerns in biological production. The United States Food and Drug Administration (FDA) and the European Medicines Agency have implemented stricter regulations on the use of animal-derived components in commercial protein manufacturing to ensure patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!