Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947145PMC
http://dx.doi.org/10.1021/bi801056wDOI Listing

Publication Analysis

Top Keywords

grk2/3 inhibition
12
beta 2ar
12
smooth muscle
8
s-coupled receptors
8
ep2 receptor
8
receptor
6
grk2/3
6
asm
5
endogenous gs-coupled
4
receptors
4

Similar Publications

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells.

View Article and Find Full Text PDF

Selective phosphorylation of threonine residues defines GPR84-arrestin interactions of biased ligands.

J Biol Chem

May 2022

The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. Electronic address:

GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP.

View Article and Find Full Text PDF

Receptor-proximal effectors mediating GnRH actions in the goldfish pituitary: Involvement of G protein subunits and GRKs.

Gen Comp Endocrinol

April 2022

Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada. Electronic address:

In goldfish (Carassius auratus), two endogenous isoforms of gonadotropin-releasing hormone (GnRH) stimulate luteinizing hormone (LH) and growth hormone (GH) secretion. These isoforms, GnRH2 and GnRH3, act on a shared population of cell-surface GnRH receptors (GnRHRs) expressed on both gonadotrophs and somatotrophs, and can signal through unique, yet partially overlapping, suites of intracellular effectors, in a phenomenon known as functional selectivity or biased signalling. In this study, G-protein alpha (Gα) subunits were targeted with two inhibitors, YM-254890 and BIM-46187, to ascertain the contribution of specific G-protein subunits in GnRH signalling.

View Article and Find Full Text PDF

Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias.

Nat Commun

January 2022

Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.

Signaling-biased ligands acting on G-protein-coupled receptors (GPCRs) differentially activate heterotrimeric G proteins and β-arrestins. Although a wealth of structural knowledge about signaling bias at the GPCR level exists (preferential engagement of a specific transducer), little is known about the bias at the transducer level (different functions mediated by a single transducer), partly due to a poor understanding of GPCR kinase (GRK)-mediated GPCR phosphorylation. Here, we reveal a unique role of the Gq heterotrimer as a determinant for GRK-subtype selectivity that regulates subsequent β-arrestin conformation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!