Sav1866 is an ATP-binding cassette (ABC) protein from the pathogen Staphylococcus aureus and is a homologue of bacterial and human multidrug ABC transporters. Recently, the three-dimensional crystal structure of Sav1866 was determined at 3.0 A resolution [Dawson, R. J., and Locher, K. P. (2006) Nature 443, 180-185]. Although this structure is frequently used to homology model human and microbial ABC multidrug transporters by computational methods, the ability of Sav1866 to transport multiple drugs has not been described. We obtained functional expression of Sav1866 in the drug-sensitive, Gram-positive bacterium Lactococcus lactis Delta lmrA Delta lmrCD lacking major endogenous multidrug transporters. Sav1866 displayed a Hoechst 33342, verapamil, tetraphenylphosphonium, and vinblastine-stimulated ATPase activity. In growing cells, Sav1866 expression conferred resistance to Hoechst 33342. In transport assays in intact cells, Sav1866 catalyzed the translocation of amphiphilic cationic ethidium. Additionally, Sav1866 mediated the active transport of Hoechst 33342 in membrane vesicles and proteoliposomes containing purified and functionally reconstituted protein. Sav1866-mediated resistance and transport were inhibited by the human ABCB1 and ABCC1 modulator verapamil. This work represents the first demonstration of multidrug transport by Sav1866 and suggests that Sav1866 can serve as a well-defined model for studies on the molecular bases of drug-protein interactions in ABC transporters. Our methods for the overexpression, purification, and functional reconstitution of Sav1866 are described in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi8006737DOI Listing

Publication Analysis

Top Keywords

sav1866
12
hoechst 33342
12
multidrug transport
8
staphylococcus aureus
8
abc transporters
8
multidrug transporters
8
cells sav1866
8
multidrug
5
abc
5
transport
5

Similar Publications

Tunable Terpolymer Series for the Systematic Investigation of Membrane Proteins.

Biomacromolecules

January 2025

Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.

Membrane proteins (MPs) are critical to cellular processes and serve as essential therapeutic targets. However, their isolation and characterization are often impeded by traditional detergent-based methods, which can compromise their native states, and retention of their native lipid environment. Amphiphilic polymers have emerged as effective alternatives, enabling the formation of nanoscale discs that preserve MPs' structural and functional integrity.

View Article and Find Full Text PDF

Sav1866, a bacterial ATP-binding cassette (ABC) exporter, plays a crucial role in cellular processes by facilitating the efflux of a diverse range of substrates, including drugs, chemotherapeutic agents, peptides, and lipids. This efflux activity significantly impacts the effectiveness of various therapies against bacterial infections. In our recent investigation, we focused on understanding the conformational dynamics of Sav1866 within different lipid environments.

View Article and Find Full Text PDF

Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access.

View Article and Find Full Text PDF

Infectious diseases have remained a burgeoning cause of death and disability since long. Staphylococcus aureus (S. aureus) is a severe bacterial pathogen causing nosocomial and community infections.

View Article and Find Full Text PDF

The intensively intermittent use of antibiotics promotes the rapid evolution of tolerance, which may lead to resistance acquisition in the following evolutionary trajectory. In addition to directly exporting antibiotics as an instant resistance strategy, efflux pumps are overexpressed in tolerant strains. To investigate how efflux pumps participate in resistance development from tolerance to resistance, we performed evolutional experiments against the antibiotic ciprofloxacin in efflux pump mutants of Staphylococcus aureus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!