Purpose: The aim of this investigation was to quantitatively compare the novel positron emission tomography (PET) hypoxia marker 2-(2-nitroimidazol-1-yl)-N-(3[(18)F],3,3-trifluoropropyl)acetamide ([(18)F]EF3) with the reference hypoxia tracer [(18)F]fluoromisonidazole ([(18)F]FMISO).
Methods: [(18)F]EF3 or [(18)F]FMISO was injected every 2 days into two separate groups of rats bearing syngeneic rhabdomyosarcoma tumours. In vivo PET analysis was done by drawing regions of interest on the images of selected tissues. The resulting activity data were quantified by the percentage of injected radioactivity per gram tissue (%ID/g) and tumour to blood (T/B) ratio. The spatial distribution of radioactivity was defined by autoradiography on frozen tumour sections.
Results: The blood clearance of [(18)F]EF3 was faster than that of [(18)F]FMISO. The clearance of both tracers was slower in tumour tissue compared with other tissues. This results in increasing T/B ratios as a function of time post tracer injection (p.i.). The maximal [(18)F]EF3 tumour uptake, compared to the maximum [(18)F]FMISO uptake, was significantly lower at 2 h p.i. but reached similar levels at 4 h p.i. The tumour uptake for both tracers was independent of the tumour volume for all investigated time points. Both tracers showed heterogeneous intra-tumoural distribution.
Conclusions: [(18)F]EF3 tumour uptake reached similar levels at 4 h p.i. compared with tumour retention observed after injection of [(18)F]FMISO at 2 h p.i. Although [(18)F]EF3 is a promising non-invasive tracer, it is not superior over [(18)F]FMISO for the visualisation of tumour hypoxia. No significant differences between [(18)F]EF3 and [(18)F]FMISO were observed with regard to the intra-tumoural distribution and the extra-tumoural tissue retention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-008-0907-x | DOI Listing |
Nanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Severance Hospital, Seoul, Republic of Korea.
Purpose: To evaluate the performance of R2* in distinguishing intrapancreatic accessory spleens (IPASs) from pancreatic neuroendocrine tumors (PNETs).
Methods: Two radiologists (R1 and R2) retrospectively reviewed the MRIs of 20 IPAS and 20 PNET patients. IPASs were diagnosed with uptake on 99mTc labeled heat-damaged red blood cell scintigraphy or characteristic findings on CT/MRI and ≥ 12 month-long-stability.
J Mater Chem B
January 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.
View Article and Find Full Text PDFRecenti Prog Med
January 2025
Fondazione Policlinico Universitario A. Gemelli Irccs, Dipartimento di Scienze di Laboratorio ed Ematologiche, Roma.
A 28-year-old woman was diagnosed with high-risk triple-expressor diffuse large B-cell lymphoma (DLBCL) (stage IV, IPI 4, CNS-IPI 5), with lymph node and extranodal involvement. The patient underwent first-line R-CHOP treatment, achieving a partial response with residual mediastinal uptake. A second-line platinum-based therapy with a transplant plan followed, resulting in stable disease; thus, she was considered refractory and started third-line therapy with CAR-T cells, receiving additional chemotherapy as bridging therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!