Impact of basic soil parameters on pesticide disappearance investigated by multivariate partial least square regression and statistics.

J Environ Qual

Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.

Published: December 2008

Dissipation time is a key parameter when studying and modeling the environmental fate of pesticides. This study was conducted to characterize the variability of pesticide disappearance in soil and to identify possible controlling parameters related to intrinsic soil properties and microbiology. Multivariate data analysis was used to study spatial variability in three horizons from 24 sandy soil profiles. The time for 50% disappearance (DT(50)) was characterized for two herbicides, metribuzin (MBZ) and MCPA, and methyltriazine amine (MTA; transformation product of metsulfuron-methyl, tribenuron-methyl, thifensulfuron-methyl, and chlorsulfuron). Normal and log-normal distributions were compared for DT(50) and soil properties and descriptive statistics were calculated. Conformity with log-transformed distributions was observed and assuming normality of the DT(50) data would cause 5 to 35% overestimation. Mean DT(50) were: MCPA 9.5, MBZ 168, and MTA 127. Significant effect of soil depth on DT(50) was shown for MCPA and MBZ, with low values in deeper horizons. Simple linear correlation for combinations of MCPA, MTA, pH, and total organic carbon (TOC) was observed. Using partial least squares regression (PLS) 71 to 85% of the total DT(50) variance was explained. A specific predictor variable could not be identified as the controlling components differed within horizons and compounds. For MCPA the overall important predictor variables were microbiology and TOC, whereas for MTA and MBZ it was inorganic variables (Al, Fe, cation exchange capacity, base saturation percent, and pH) and microbiology. The study indicates that PLS generated input data can improve pesticide fate modeling and reduce the uncertainty in dissipation estimation.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2006.0230DOI Listing

Publication Analysis

Top Keywords

pesticide disappearance
8
soil properties
8
dt50 mcpa
8
mcpa mbz
8
soil
6
dt50
6
mcpa
5
impact basic
4
basic soil
4
soil parameters
4

Similar Publications

Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.

View Article and Find Full Text PDF

Background: Aedes aegypti transmits various arthropod-borne diseases such as dengue, posing a significant burden to public health in tropical and subtropical regions. Pyrethroid-based control strategies are effective in managing this vector; however, the development of insecticide resistance has hindered these efforts. Hence, long-term monitoring of insecticide resistance in mosquito populations is crucial for effective vector and disease control.

View Article and Find Full Text PDF

The resistance mechanism of B_P225F and B_H272R mutations in succinate dehydrogenase in Botrytis cinerea.

Int J Biol Macromol

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:

Botrytis cinerea populations resistant to succinate dehydrogenase inhibitors (SDHIs) represent a major problem for the sustainable development of modern agriculture. In the present study, the resistance mechanism of B_P225F and B_H272R mutations in B. cinerea SDH (BcSDH) resistant to SDHIs fungicides, including boscalid (BOS), penflufen (PEN), pydiflumetofen (PYD), fluopyram (FLU), and benzovindiflupyr (BEN), was uncovered.

View Article and Find Full Text PDF

A field experiment was carried out during the Rabi 2022-23 at Punjab Agricultural University, Ludhiana to evaluate the effect of pyroxasulfone and pendimethalin on soil enzymatic and microbial activities when applied individually or as a tank mix combination. The experiment employed a factorial randomized complete block design in triplicate encompassing 16 treatments. Control soils exhibited a continuous increase in enzymatic and microbial activities over time.

View Article and Find Full Text PDF
Article Synopsis
  • * This study aimed to evaluate three models (PRZM5, LEACHM, and HYDRUS-1D) for predicting PFAS distribution in soil at a site in Pennsylvania that has used wastewater effluent for years.
  • * Results showed that while PRZM5 struggled to accurately predict PFOS behavior, LEACHM and HYDRUS-1D effectively captured PFAS retention, highlighting the importance of modeling both unsaturated flow and adsorption at the air-water interface for long-term predictions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!