Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2007.0630 | DOI Listing |
J Mol Model
January 2025
School of Chemistry and Chemical Engineering, Xian Yang Normal University, Xian Yang, China.
Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.
View Article and Find Full Text PDFFront Nutr
January 2025
Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
Background And Aim: Although the relationship between selenium and metabolic syndrome (MetS) was previously investigated, the findings were inconsistent. Therefore, we performed a systematic review and dose-response meta-analysis to summarize the association between blood selenium and MetS in adults.
Methods: A comprehensive search was conducted in Medline (PubMed), ISI Web of Science, Scopus, and motor engineering of Google Scholar up to October 1st, 2024.
The rapidly expanding industrialization and global increase in economic activities have drawn attention to the concerning accumulation of waste. The textile industry plays a significant role in environmental pollution, especially in and water pollution. Harmful dyes used during the fabrication process are mixed with water bodies through sewage or wastewater ejected from industrial factories.
View Article and Find Full Text PDFSci Rep
January 2025
Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.
Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.
View Article and Find Full Text PDFBiomaterials
January 2025
Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, People's Republic of China. Electronic address:
Ischemia/reperfusion injury (I/RI) following myocardial infarction, a leading cause of global morbidity and mortality, is characterized by detrimental oxidative stress and inflammation. In response, we proposed an I/RI alleviation strategy using the intravenous injection of spherical selenium nanoparticles (SeNPs) synthesized by a template method. Single-cell sequencing revealed these proposed SeNPs exhibited exceptional antioxidant and anti-inflammatory properties, disrupting the STAT1-ROS cycle, therefore preserving mitochondrial respiration and inhibiting caspase-mediated cardiomyocyte apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!