In an area with unstable malaria transmission, detection of Plasmodium falciparum infection in 379 symptomatic individuals was assessed by microscopy and three polymerase chain reaction (PCR) methodologies. P. falciparum infection was detected in 25% of patients by microscopy, 37% by nested PCR, 41% by merozoite surface protein-2 (MSP-2) PCR, and 45% by a ligase detection reaction-fluorescent microsphere assay (LDR-FMA). Of the 64 individuals who were LDR-FMA positive, microscopy negative and did not receive treatment, 8 (12.5%) had persistent symptoms and returned for treatment. Malaria attributable fraction (MAF) in symptomatic individuals was 14.6% by microscopy (95% confidence interval [CI] = 6.6-21.8%) and 28.2% by nested PCR (95% CI = 17.9-37.2%). In this highland area, P. falciparum infection in symptomatic individuals is detected more frequently by PCR than microscopy, and most frequently by LDR-FMA. P. falciparum infection appears to resolve without treatment in most LDR-FMA-positive, microscopy-negative individuals, but is persistent in a subset of these individuals and requires treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590590 | PMC |
ACS Med Chem Lett
January 2025
Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for , , and that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin.
View Article and Find Full Text PDFMalar J
January 2025
Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Background: The increased occurrence of malaria among Africa's displaced communities poses a new humanitarian problem. Understanding malaria epidemiology among the displaced population in African refugee camps is a vital step for implementing effective malaria control and elimination measures. As a result, this study aimed to generate comprehensive and conclusive data from diverse investigations undertaken in Africa.
View Article and Find Full Text PDFPLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
SUMMARYThe human malaria parasite is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!