Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension.

Am J Physiol Heart Circ Physiol

Center for Interdisciplinary Research in Cardiovascular Science, Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505, USA.

Published: October 2008

This study determined if altered vascular prostacyclin (PGI(2)) and/or thromboxane A(2) (TxA(2)) production with reduced Po(2) contributes to impaired hypoxic dilation of skeletal muscle resistance arterioles of obese Zucker rats (OZRs) versus lean Zucker rats (LZRs). Mechanical responses were assessed in isolated gracilis muscle arterioles following reductions in Po(2) under control conditions and following pharmacological interventions inhibiting arachidonic acid metabolism and nitric oxide synthase and alleviating elevated vascular oxidant stress. The production of arachidonic acid metabolites was assessed using pooled arteries from OZRs and LZRs in response to reduced Po(2). Hypoxic dilation, endothelium-dependent in both strains, was attenuated in OZRs versus LZRs. Nitric oxide synthase inhibition had no significant impact on hypoxic dilation in either strain. Cyclooxygenase inhibition dramatically reduced hypoxic dilation in LZRs and abolished responses in OZRs. Treatment of arterioles from OZRs with polyethylene glycol-superoxide dismutase improved hypoxic dilation, and this improvement was entirely cyclooxygenase dependent. Vascular PGI(2) production with reduced Po(2) was similar between strains, although TxA(2) production was increased in OZRs, a difference that was attenuated by treatment of vessels from OZRs with polyethylene glycol-superoxide dismutase. Both blockade of PGH(2)/TxA(2) receptors and inhibition of thromboxane synthase increased hypoxic dilation in OZR arterioles. These results suggest that a contributing mechanism underlying impaired hypoxic dilation of skeletal muscle arterioles of OZRs may be an increased vascular production of TxA(2), which competes against the vasodilator influences of PGI(2). These results also suggest that the elevated vascular oxidant stress inherent in metabolic syndrome may contribute to the increased vascular TxA(2) production and may blunt vascular sensitivity to PGI(2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593516PMC
http://dx.doi.org/10.1152/ajpheart.00596.2008DOI Listing

Publication Analysis

Top Keywords

hypoxic dilation
28
increased vascular
12
dilation skeletal
12
skeletal muscle
12
muscle arterioles
12
zucker rats
12
txa2 production
12
reduced po2
12
dilation
8
arterioles obese
8

Similar Publications

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Right ventricular remodeling in complex congenital heart disease.

Can J Cardiol

January 2025

Research Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Canada; Adult Congenital Heart Centre, Montreal Heart Institute, Université de Montréal, Montreal, Canada. Electronic address:

In congenital heart diseases (CHD) of moderate to great complexity involving the right ventricle (RV), the morphologic RV can be exposed to significant stressors across the lifespan either in a biventricular circulation in a sub-pulmonary or sub-aortic position, or as part of a univentricular circulation. These include pressure and/or volume overload, hypoxia, ischemia, and periprocedural surgical stress leading to remodeling, maladaptation, dilation hypertrophy and dysfunction. This review examines the macroscopic remodeling of the RV in various forms of CHD and explores remodeling trajectories, along with the effects of surgeries and residual lesion repair, in tetralogy of Fallot, Ebstein anomaly, congenitally corrected transposition of the great arteries, transposition of the great arteries with atrial switch surgery, and single ventricle palliated by Fontan.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.

View Article and Find Full Text PDF

In Obesity, Esophagogastric Junction Fat Impairs Esophageal Barrier Function and Dilates Intercellular Spaces via Hypoxia-Inducible Factor 2α.

Gastroenterology

December 2024

Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas; Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas. Electronic address:

Background & Aims: Dilated intercellular space in esophageal epithelium, a sign of impaired barrier function, is a characteristic finding of gastroesophageal reflux disease that is also found in obese patients without gastroesophageal reflux disease. We explored molecular mechanisms whereby adipose tissue products might impair esophageal barrier integrity.

Methods: Cultures of visceral fat obtained during foregut surgery from obese and nonobese patients were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!