Regulation of the Rhodobacter sphaeroides 2.4.1 hemA gene by PrrA and FnrL.

J Bacteriol

Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA.

Published: October 2008

Part of the oxygen responsiveness of Rhodobacter sphaeroides 2.4.1 tetrapyrrole production involves changes in transcription of the hemA gene, which codes for one of two isoenzymes catalyzing 5-aminolevulinic acid synthesis. Regulation of hemA transcription from its two promoters is mediated by the DNA binding proteins FnrL and PrrA. The two PrrA binding sites, binding sites I and II, which are located upstream of the more-5' hemA promoter (P1), are equally important to transcription under aerobic conditions, while binding site II is more important under anaerobic conditions. By using phosphoprotein affinity chromatography and immunoblot analyses, we showed that the phosphorylated PrrA levels in the cell increase with decreasing oxygen tensions. Then, using both in vivo and in vitro methods, we demonstrated that the relative affinities of phosphorylated and unphosphorylated PrrA for the two binding sites differ and that phosphorylated PrrA has greater affinity for site II. We also showed that PrrA regulation is directed toward the P1 promoter. We propose that the PrrA component of anaerobic induction of P1 transcription is attributable to higher affinity of phosphorylated PrrA than of unphosphorylated PrrA for binding site II. Anaerobic activation of the more-3' hemA promoter (P2) is thought to involve FnrL binding to an FNR consensuslike sequence located upstream of the P2 promoter, but the contribution of FnrL to P1 induction may be indirect since the P1 transcription start is within the putative FnrL binding site. We present evidence suggesting that the indirect action of FnrL works through PrrA and discuss possible mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566205PMC
http://dx.doi.org/10.1128/JB.00828-08DOI Listing

Publication Analysis

Top Keywords

prra binding
12
binding sites
12
binding site
12
phosphorylated prra
12
prra
11
rhodobacter sphaeroides
8
sphaeroides 241
8
hema gene
8
binding
8
located upstream
8

Similar Publications

M. tuberculosis PrrA binds the dosR promoter and regulates mycobacterial adaptation to hypoxia.

Tuberculosis (Edinb)

September 2024

School of Life Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Institute Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA. Electronic address:

The PrrAB two-component system (TCS) is essential for Mycobacterium tuberculosis viability. Previously, it was demonstrated that PrrA binds DNA in the absence of PrrB-mediated transphosphorylation and that non-cognate serine/threonine-kinases phosphorylate PrrA threonine-6 (T6). Therefore, we investigated the differential binding affinity and regulatory properties of the M.

View Article and Find Full Text PDF

Probable human origin of the SARS-CoV-2 polybasic furin cleavage motif.

BMC Genom Data

November 2023

Biochemistry and Molecular Biology, University Rovira i Virgili, Tarragona, Spain.

Background: The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2.

View Article and Find Full Text PDF

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan city, China in December 2019 and thereafter its spillover across the world has created a global pandemic and public health crisis. Right after, there has been intense interest in understanding how the SARS-CoV-2 originated and evolved. This paper also aims to shed light on the origin and evolution of SARS-CoV- 2.

View Article and Find Full Text PDF

Identification of an immunogenic epitope and protective antibody against the furin cleavage site of SARS-CoV-2.

EBioMedicine

January 2023

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA. Electronic address:

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed.

Methods: Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!