A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status.

J Exp Bot

Abteilung für Biophysikalische Chemie, Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60439 Frankfurt a. M., Germany.

Published: November 2008

A high-precision pressure probe is described which allows non-invasive online-monitoring of the water relations of intact leaves. Real-time recording of the leaf water status occurred by data transfer to an Internet server. The leaf patch clamp pressure probe measures the attenuated pressure, P(p), of a leaf patch in response to a constant clamp pressure, P(clamp). P(p) is sensed by a miniaturized silicone pressure sensor integrated into the device. The magnitude of P(p) is dictated by the transfer function of the leaf, T(f), which is a function of leaf patch volume and ultimately of cell turgor pressure, P(c), as shown theoretically. The power function T(f)=f(P(c)) theoretically derived was experimentally confirmed by concomitant P(p) and P(c) measurements on intact leaflets of the liana Tetrastigma voinierianum under greenhouse conditions. Simultaneous P(p) recordings on leaflets up to 10 m height above ground demonstrated that changes in T(f) induced by P(c) changes due to changes of microclimate and/or of the irrigation regime were sensitively reflected in corresponding changes of P(p). Analysis of the data show that transpirational water loss during the morning hours was associated with a transient rise in turgor pressure gradients within the leaflets. Subsequent recovery of turgescence during the afternoon was much faster than the preceding transpiration-induced water loss if the plants were well irrigated. Our data show the enormous potential of the leaf patch clamp pressure probe for leaf water studies including unravelling of the hydraulic communication between neighbouring leaves and over long distances within tall plants (trees).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504341PMC
http://dx.doi.org/10.1093/jxb/ern171DOI Listing

Publication Analysis

Top Keywords

leaf patch
16
leaf water
12
pressure probe
12
clamp pressure
12
non-invasive online-monitoring
8
leaf
8
water status
8
pressure
8
patch clamp
8
function leaf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!