Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulfide oxidation in the lugworm, Arenicola marina (L.), is most likely localized in the mitochondria, which can either produce ATP with sulfide as a substrate or detoxify it via an alternative oxidase. The present study identified selective activators of the energy-conserving and the detoxifying sulfide oxidation pathways respectively. In the presence of the ROS scavengers glutathione (GSH) and ascorbate, isolated lugworm mitochondria rapidly oxidized up to 100 micromoll(-1) sulfide with maximal oxygen consumption rates but did not produce any ATP in the process. Under these conditions, salicylhydroxamic acid (SHAM), which is an inhibitor of the alternative oxidase of plant mitochondria, completely blocked oxygen consumption whereas inhibitors of complex III and IV had hardly any effect. By contrast, dehydroascorbate (DHA) enabled the mitochondria to gain ATP from sulfide oxidation even if the sulfide concentration far exceeded the threshold for inhibition of cytochrome oxidase. In the presence of dehydroascorbate, respiratory rates were independent of sulfide concentrations, with a respiratory control ratio of 2.1+/-0.2, and both oxygen consumption and ATP production were completely inhibited by myxothiazol and sodium azide but only marginally by SHAM. The present data indicate that a redox mechanism may contribute to the regulation of sulfide oxidation in lugworm mitochondria in vivo. Thus, mitochondria are presumably much more sulfide resistant in a cellular context than previously thought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.019729 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!