Plant hormones and nutrient signaling.

Plant Mol Biol

Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.

Published: March 2009

Plants count on a wide variety of metabolic, physiological, and developmental responses to adapt their growth to variations in mineral nutrient availability. To react to such variations plants have evolved complex sensing and signaling mechanisms that allow them to monitor the external and internal concentration of each of these nutrients, both in absolute terms and also relatively to the status of other nutrients. Recent evidence has shown that hormones participate in the control of these regulatory networks. Conversely, mineral nutrient conditions influence hormone biosynthesis, further supporting close interrelation between hormonal stimuli and nutritional homeostasis. In this review, we summarize these evidences and analyze possible transcriptional correlations between hormonal and nutritional responses, as a means to further characterize the role of hormones in the response of plants to limiting nutrients in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-008-9380-yDOI Listing

Publication Analysis

Top Keywords

mineral nutrient
8
plant hormones
4
hormones nutrient
4
nutrient signaling
4
signaling plants
4
plants count
4
count wide
4
wide variety
4
variety metabolic
4
metabolic physiological
4

Similar Publications

This study investigates the therapeutic and nutritional potential of fenugreek sprouts from 30 diverse genotypes sourced from various regions. The aim was to characterize and compare their therapeutic attributes, including antioxidant capacity, antidiabetic, and anti-cholinesterase activities, along with their nutritional compositions, particularly minerals, and protein content. Results revealed significant variations among the genotypes in terms of their therapeutic properties.

View Article and Find Full Text PDF

This study investigates the nutritional and anti-nutrient profiles of extrudates produced from seven formulations of pearl millet and Bambara groundnut flour in seven different ratios: 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20, with 100% pearl millet and 100% Bambara groundnut extrudates used as controls. The extrudates were processed using a twin screw extruder and analyzed for their nutritional and anti-nutritional properties. The findings revealed a rising pattern in the content of fiber, moisture, protein, ash and fat as the substitution of Bambara groundnut increased in the extrudate.

View Article and Find Full Text PDF

Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.

View Article and Find Full Text PDF

Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.

View Article and Find Full Text PDF

The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!