Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Walking along a curved path requires coordinated motor actions of the entire body. Here, we investigate the relationship between head and trunk movements during walking. Previous studies have found that the head systematically turns into turns before the trunk does. This has been found to occur at a constant distance rather than at a constant time before a turn. We tested whether this anticipatory head behavior is spatially invariant for turns of different angles. Head and trunk positions and orientations were measured while participants walked around obstacles in 45 degrees, 90 degrees, 135 degrees or 180 degrees turns. The radius of the turns was either imposed or left free. We found that the head started to turn into the direction of the turn at a constant distance before the obstacle (approximately 1.1 m) for turn angles up to 135 degrees . During turns, the head was consistently oriented more into the direction of the turn than the trunk. This difference increased for larger turning angles and reached its maximum later in the turn for larger turns. Walking speeds decreased monotonically for increasing turn angles. Imposing fixed turn radii only affected the point at which the trunk started to turn into a turn. Our results support the view that anticipatory head movements during turns occur in order to gather advance visual information about the trajectory and potential obstacles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-008-1525-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!