The behavior of hydronium and hydroxide ions at the water/alkane, water/vapor, and water/rigid wall interfaces was investigated by means of molecular dynamics simulations. All these interfaces exhibit a strong affinity for hydronium, which is in agreement with spectroscopic and low pH zeta-potential measurements. Except for the water/rigid wall interface, which strongly structures water and weakly attracts OH(-), none of the other investigated interfaces shows an appreciable accumulation of hydroxide. This computational result is at odds with the interpretation of higher pH zeta-potential and titration experiments, however, it is supported by surface selective spectroscopies of the surface of water and hydroxide solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b806432f | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States.
Hydronium (HO) and hydroxide (OH) ions perform structural diffusion in water via sequential proton transfers ("Grotthuss hopping"). This phenomenon can be accounted for by interspersing stochastic proton transfer events in classical molecular dynamics simulations. The implementation of OH-mediated proton hopping is particularly challenging because classical force fields are known to produce overcoordinated solvation structures around the OH ion.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA.
When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)-2 × 2 TiO octahedra in cross-section-a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA after synthesis is determined to be ≈ 13.
View Article and Find Full Text PDFScience
December 2024
Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
The molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information.
View Article and Find Full Text PDFEnviron Sci Technol
October 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!