AI Article Synopsis

  • The study used molecular dynamics simulations to explore how hydronium and hydroxide ions behave at different interfaces involving water, such as water/alkane and water/vapor.
  • Hydronium ions show a strong preference for these interfaces, matching previous spectroscopic findings, while hydroxide ions accumulate notably only at the water/rigid wall interface.
  • These simulation results contradict some experimental interpretations regarding pH measurements but align with observations from surface-sensitive spectroscopy techniques.

Article Abstract

The behavior of hydronium and hydroxide ions at the water/alkane, water/vapor, and water/rigid wall interfaces was investigated by means of molecular dynamics simulations. All these interfaces exhibit a strong affinity for hydronium, which is in agreement with spectroscopic and low pH zeta-potential measurements. Except for the water/rigid wall interface, which strongly structures water and weakly attracts OH(-), none of the other investigated interfaces shows an appreciable accumulation of hydroxide. This computational result is at odds with the interpretation of higher pH zeta-potential and titration experiments, however, it is supported by surface selective spectroscopies of the surface of water and hydroxide solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b806432fDOI Listing

Publication Analysis

Top Keywords

hydronium hydroxide
8
water/rigid wall
8
hydroxide interface
4
interface water
4
water hydrophobic
4
hydrophobic media
4
media behavior
4
behavior hydronium
4
hydroxide ions
4
ions water/alkane
4

Similar Publications

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

January 2025

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Classical Models of Hydroxide for Proton Hopping Simulations.

J Phys Chem B

December 2024

Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States.

Hydronium (HO) and hydroxide (OH) ions perform structural diffusion in water via sequential proton transfers ("Grotthuss hopping"). This phenomenon can be accounted for by interspersing stochastic proton transfer events in classical molecular dynamics simulations. The implementation of OH-mediated proton hopping is particularly challenging because classical force fields are known to produce overcoordinated solvation structures around the OH ion.

View Article and Find Full Text PDF

When a few drops of acid (hydrochloric, acrylic, propionic, acetic, or formic) are added to a colloid comprised of 1D lepidocrocite titanate nanofilaments (1DLs)-2 × 2 TiO octahedra in cross-section-a hydrogel forms, in many cases, within seconds. The 1DL synthesis process requires the reaction between titanium diboride with tetramethylammonium (TMA), hydroxide. Using quantitative nuclear magnetic resonance (qNMR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), the mass percent of TMA after synthesis is determined to be ≈ 13.

View Article and Find Full Text PDF

Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects.

Science

December 2024

Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

The molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information.

View Article and Find Full Text PDF
Article Synopsis
  • Recycling spent lithium-ion batteries helps reduce environmental damage from mining while addressing raw material shortages and price fluctuations.
  • This study explores using electrodialysis techniques, specifically selective and bipolar ion-exchange membranes, to create a sustainable recycling process for lithium-ion batteries.
  • The findings show that selective electrodialysis effectively isolates lithium ions with high purity and retention, while bipolar membrane electrodialysis converts lithium chloride into useful lithium hydroxide and hydrochloric acid, proposing significant cost savings in lithium production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!