Atomistic simulations are used to characterize the molecular dynamics (MD) of alkyl chains with different functionalizations in different water/acetonitrile mixtures (80/20 and 50/50). Starting from fully equilibrated solvent systems (flat density profile for both components), microheterogeneous structuring of the solvent in the chromatographic system is found for both mixtures. Depending on the functionalization of the alkyl chain (nitrile, amide, nitro, phenyl), differences in the density profiles of the two solvents (water/acetonitrile), the effective width of the stationary phase and the solvent gradients in the overlap region are observed. The solvent mixture (mobile phase) in RPLC is a liquid which is directly involved in the physical process and must be included explicitly. Far from the surface, the solvent displays bulk properties; closer to it the mixed solvent partitions due to the presence of the stationary phase. This creates a gradient in solvent strength perpendicular to the surface which influences the motions of the analyte. The surface is found to define the amount of water that can bind to it and defines its hydrophilic character. Proposals from the literature, such as the existence of persistent water filaments extending from the functionalized silica layer towards the bulk solvent, are discussed. Simulations of acridine orange near a -NH(2)- and -phenol-functionalized surface highlight the different dynamical behaviour (insertion vs. adsorption) of an analyte depending on the functionalization of the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b807492eDOI Listing

Publication Analysis

Top Keywords

solvent
9
water/acetonitrile mixtures
8
depending functionalization
8
stationary phase
8
surface
5
solvent structures
4
structures mixed
4
mixed water/acetonitrile
4
mixtures chromatographic
4
chromatographic interfaces
4

Similar Publications

Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs.

View Article and Find Full Text PDF

Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, -Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues.

Anal Chem

January 2025

Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.

Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.

View Article and Find Full Text PDF

This study leverages and upgrades the capabilities of computer-aided retrosynthesis (CAR) in the systematic development of greener and more efficient total synthetic routes for the active pharmaceutical ingredient (API) IM-204, a helicase-primase inhibitor that demonstrated enhanced efficacy against Herpes simplex virus (HSV) infections. Using various CAR tools, several total synthetic routes were uncovered, evaluated, and experimentally validated, with the goal to maximize selectivity and yield and minimize the environmental impact. The CAR tools revealed several synthetic options under different constraints, which can overperform the patented synthetic route used as a reference.

View Article and Find Full Text PDF

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!