The haptotropic rearrangement of dinuclear metal carbonyl species on the conjugate pi-ligand of (micro2,eta3:eta5-4,6,8-trimethylazulene)M2(CO)5 [M = Fe (3) and Ru (4)] was investigated in detail both experimentally and theoretically. The complexes, 3 and 4, were synthesized and characterized by spectroscopy and crystallography. The spin saturation transfer technique of 1H NMR was used to measure the rate constant k of the haptotropic isomerization between the two enantiomers of 3 and 4, from which thermodynamic parameters were determined: (3; deltaS(double dagger) = -7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 22 +/- 1 cal mol(-1), deltaG(double dagger)373 = 25 +/- 1 cal mol(-1)), (4; deltaS(double dagger) = 7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 25 +/- 1 cal mol(-1), deltaG(double dagger)373 = 23 +/- 1 cal mol(-1)). DFT calculations (the B3LYP, B1B95 and PBE1PBE methods) were also carried out using the CEP-31G and cc-pVDZ as the basis set of the transition metal and other elements, respectively, by which both ground state and transition state structures were optimized for the haptotropic rearrangement of 3 and 4. The potential energy surface for these reactions suggests that the reaction involves the conversion of the coordination mode from micro2eta3,eta5- (ground state) to micro2,eta1,eta5- (transition state). Mechanistic consideration, in particular that of differences in transition states between the diiron and diruthenium complexes, is also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b719331a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!