Promotion of organic reactions by interfacial hydrogen bonds on hydroxyl group rich nano-solids.

Chem Commun (Camb)

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China.

Published: June 2008

Surface hydroxyl group rich nano-structured solids dramatically increase the rate of several organic reactions; such effect is attributed to the formation of interfacial hydrogen bonds between the surface hydroxyl groups and the reactants; this catalytic effect is versatile and applicable for a broad range of reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b801361fDOI Listing

Publication Analysis

Top Keywords

organic reactions
8
interfacial hydrogen
8
hydrogen bonds
8
hydroxyl group
8
group rich
8
surface hydroxyl
8
promotion organic
4
reactions interfacial
4
bonds hydroxyl
4
rich nano-solids
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Mol Oncol

January 2025

Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).

View Article and Find Full Text PDF

A comprehensive screening method of oxidation systems based on reaction rate constant (k value) and emergy (Em value).

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China. Electronic address:

Oxidation systems are diverse and widely used for the degradation of organic pollutants in water. Identifying suitable oxidation systems for certain organic pollutants is a common challenge in practical engineering. Simultaneous consideration of the oxidation selectivity and economy of different oxidation systems for organic pollutants can improve the accuracy of the screening process.

View Article and Find Full Text PDF

Mercury sequestration in alkaline salt low-level radioactive waste.

Environ Sci Pollut Res Int

January 2025

Savannah River National Laboratory, Aiken, SC, USA.

Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!