AI Article Synopsis

  • The study identifies apoptosis as a significant mechanism of neuronal cell death in PS/APP mice, a model for Alzheimer's disease.
  • It highlights that these mice showed increased signs of apoptosis, including DNA fragmentation and activation of caspase-3, particularly as they aged.
  • The research also points out that there is a relationship between autophagy and apoptosis, with impairments in autophagy leading to a higher number of apoptotic neurons in the PS/APP model.

Article Abstract

Mechanisms of neuronal loss in Alzheimer's disease (AD) are poorly understood. Here we show that apoptosis is a major form of neuronal cell death in PS/APP mice modeling AD-like neurodegeneration. Pyknotic neurons in adult PS/APP mice exhibited apoptotic changes, including DNA fragmentation, caspase-3 activation, and caspase-cleaved alpha-spectrin generation, identical to developmental neuronal apoptosis in wild-type mice. Ultrastructural examination using immunogold cytochemistry confirmed that activated caspase-3-positive neurons also exhibited chromatin margination and condensation, chromatin balls, and nuclear membrane fragmentation. Numbers of apoptotic profiles in both cortex and hippocampus of PS/APP mice compared with age-matched controls were twofold to threefold higher at 6 months of age and eightfold higher at 21 to 26 months of age. Additional neurons undergoing dark cell degeneration exhibited none of these apoptotic features. Activated caspase-3 and caspase-3-cleaved spectrin were abundant in autophagic vacuoles, accumulating in dystrophic neurites of PS/APP mice similar to AD brains. Administration of the cysteine protease inhibitor, leupeptin, promoted accumulation of autophagic vacuoles containing activated caspase-3 in axons of PS/APP mice and, to a lesser extent, in those of wild-type mice, implying that this pro-apoptotic factor is degraded by autophagy. Leupeptin-induced autophagic impairment increased the number of apoptotic neurons in PS/APP mice. Our findings establish apoptosis as a mode of neuronal cell death in aging PS/APP mice and identify the cross talk between autophagy and apoptosis, which influences neuronal survival in AD-related neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527090PMC
http://dx.doi.org/10.2353/ajpath.2008.071176DOI Listing

Publication Analysis

Top Keywords

ps/app mice
32
mice
10
neuronal apoptosis
8
cross talk
8
ps/app
8
aging ps/app
8
alzheimer's disease
8
neuronal cell
8
cell death
8
exhibited apoptotic
8

Similar Publications

Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation.

Int J Mol Sci

December 2024

Department of Nutrition, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 40604, Taiwan.

Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored.

View Article and Find Full Text PDF

Synaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar.

View Article and Find Full Text PDF

Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer's disease.

Folia Neuropathol

April 2015

Jolanta Dorszewska, MD, PhD, Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Str., 60-355 Poznan, Poland, phone: +48 61 869 14 39, fax: +48 61 869 16 97, e-mail:

Alzheimer's disease (AD) leads to generation of β-amyloid (Aβ) in the brain. Alzheimer's disease model PS/APP mice show a markedly accelerated accumulation of Aβ, which may lead to apoptosis induction e.g.

View Article and Find Full Text PDF

Autophagy is a lysosomal degradative process which recycles cellular waste and eliminates potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are demonstrated by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted.

View Article and Find Full Text PDF

A common problem faced by researchers using transgenic models to study disease is the phenotypic variability that exists within a group or colony of animals. Significant pathological analyses thus often require large numbers of mice to perform. Many lines of transgenic mice harboring the gene for human amyloid precursor protein (APP) with different mutations causing familial Alzheimer's disease have been developed over the past decade to study plaque deposition and other aspects of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!