Atmospheric warming and the amplification of precipitation extremes.

Science

Environmental Systems Science Centre, University of Reading, Berkshire RG6 6AL, UK.

Published: September 2008

Climate models suggest that extreme precipitation events will become more common in an anthropogenically warmed climate. However, observational limitations have hindered a direct evaluation of model-projected changes in extreme precipitation. We used satellite observations and model simulations to examine the response of tropical precipitation events to naturally driven changes in surface temperature and atmospheric moisture content. These observations reveal a distinct link between rainfall extremes and temperature, with heavy rain events increasing during warm periods and decreasing during cold periods. Furthermore, the observed amplification of rainfall extremes is found to be larger than that predicted by models, implying that projections of future changes in rainfall extremes in response to anthropogenic global warming may be underestimated.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1160787DOI Listing

Publication Analysis

Top Keywords

rainfall extremes
12
extreme precipitation
8
precipitation events
8
atmospheric warming
4
warming amplification
4
precipitation
4
amplification precipitation
4
extremes
4
precipitation extremes
4
extremes climate
4

Similar Publications

Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems.

View Article and Find Full Text PDF

In recent decades, the global climate has changed mainly due to human-induced causes and realizing their manifestations in the forms of extreme events such as droughts, floods, heat stress, and variability in rainfall. Arid and semi-arid ecosystems are sensitive to changes in climate variability, including the Borana zone. This study was therefore initiated to assess how vulnerable pastoral and agro-pastoral livelihoods are to climate change, as well as to estimate the effects, and pinpoint potential response measures that could be implemented in the study area.

View Article and Find Full Text PDF

As endpoints of watersheds, bays concentrate erosion- and human-derived substances such as dissolved inorganic nutrients and pollutants. We investigated the water movement and biogeochemistry of two bays in Curaçao: Piscadera Bay and Spaanse Water, during the dry (May 2022 and 2023) and wet seasons (November 2021 and 2023). Bay-ocean exchange was limited during the dry season, enhancing nutrient concentrations in the bays.

View Article and Find Full Text PDF

An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).

View Article and Find Full Text PDF

Atmospheric corrosion of carbon and galvanized steel under high rainfall conditions.

Heliyon

January 2025

Grupo de Investigación en Energías Renovables y Meteorología-GIERMET, Universidad Tecnológica del Chocó, Cra 22 No 18b -10, Quibdó, Colombia.

The corrosion rates of carbon steel and galvanized steel according to the ISO 9223 standard, the effect of pollutant contamination and atmospheric aggressiveness under high rainfall conditions in the Chocó department were studied. Carbon and galvanized steel samples, chloride, and sulfur collectors were exposed in three atmospheric stations in three strategic positions covering the Colombian Pacific: Quibdó, Andagoya and Bahía Solano, for different exposure periods (up to 18 months). The structural-micro characterization of corrosion products was evaluated via X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy SEM-EDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!