Increased plasma and hepatic TNF-alpha expression is well documented in patients with alcoholic hepatitis and is implicated in the pathogenesis of alcoholic liver disease. We have previously shown that monocytes from patients with alcoholic hepatitis show increased constitutive and LPS-induced NF-kappaB activation and TNF-alpha production. Our recent studies showed that chronic ethanol exposure significantly decreased cellular cAMP levels in both LPS-stimulated and unstimulated monocytes and Kupffer cells, leading to an increase in LPS-inducible TNF-alpha production by affecting NF-kappaB activation and induction of TNF mRNA expression. Accordingly, the mechanisms underlying this ethanol-induced decrease in cellular cAMP leading to an increase in TNF expression were examined in monocytes/macrophages. In this study, chronic ethanol exposure was observed to significantly increase LPS-inducible expression of cAMP-specific phosphodiesterase (PDE)4B that degrades cellular cAMP. Increased PDE4B expression was associated with enhanced NF-kappaB activation and transcriptional activity and subsequent priming of monocytes/macrophages leading to enhanced LPS-inducible TNF-alpha production. Selective inhibition of PDE4 by rolipram abrogated LPS-mediated TNF-alpha expression at both protein and mRNA levels in control and ethanol-treated cells. Notably, PDE4 inhibition did not affect LPS-inducible NF-kappaB activation but significantly decreased NF-kappaB transcriptional activity. These findings strongly support the pathogenic role of PDE4B in the ethanol-mediated priming of monocytes/macrophages and increased LPS-inducible TNF production and the subsequent development of alcoholic liver disease (ALD). Since enhanced TNF expression plays a significant role in the evolution of clinical and experimental ALD, its downregulation via selective PDE4B inhibitors could constitute a novel therapeutic approach in the treatment of ALD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575909 | PMC |
http://dx.doi.org/10.1152/ajpgi.90232.2008 | DOI Listing |
J Vis Exp
January 2025
Department of Cardiac Surgery, the First Affiliated Hospital of Xinjiang Medical University;
The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.
View Article and Find Full Text PDFOdontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China.
Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China.
Acute renal injury (AKI) has a high incidence rate and mortality, but current treatment methods are limited. As a kind of nanomaterial with enzyme-like activity, nanozyme has shown outstanding advantages in treating AKI according to recent reports. Herein, we assess the potential of manganese-based nanozymes (MnO-BSA NPs) with excellent biosafety in effectively alleviating AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!