Motivation: Searching genomes for non-coding RNAs (ncRNAs) by their secondary structure has become an important goal for bioinformatics. For pseudoknot-free structures, ncRNA search can be effective based on the covariance model and CYK-type dynamic programming. However, the computational difficulty in aligning an RNA sequence to a pseudoknot has prohibited fast and accurate search of arbitrary RNA structures. Our previous work introduced a graph model for RNA pseudoknots and proposed to solve the structure-sequence alignment by graph optimization. Given k candidate regions in the target sequence for each of the n stems in the structure, we could compute a best alignment in time O(k(t)n) based upon a tree width t decomposition of the structure graph. However, to implement this method to programs that can routinely perform fast yet accurate RNA pseudoknot searches, we need novel heuristics to ensure that, without degrading the accuracy, only a small number of stem candidates need to be examined and a tree decomposition of a small tree width can always be found for the structure graph.
Results: The current work builds on the previous one with newly developed preprocessing algorithms to reduce the values for parameters k and t and to implement the search method into a practical program, called RNATOPS, for RNA pseudoknot search. In particular, we introduce techniques, based on probabilistic profiling and distance penalty functions, which can identify for every stem just a small number k (e.g. k
Download full-text PDF
Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562014 PMC http://dx.doi.org/10.1093/bioinformatics/btn393 DOI Listing Publication Analysis
Top Keywords
Anal Chem
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. Electronic address:
Viscosity is a fundamental property in biological systems, influencing organelle function and molecular diffusion. Abnormal viscosity is associated with diseases such as metabolic disorders, neurodegeneration, and cancer. Lysosomes, central to cellular degradation and recycling, are sensitive to viscosity changes, which can disrupt enzymatic activity and cellular homeostasis.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 2112 Cyprus.
Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Toxicological Chemistry, National Poison Control Center, Military Medical Academy, Belgrade, 11000, Serbia.
Introduction: Qualitative and quantitative testing of ethanol in samples is an important analytical procedure that provides accurate, precise, and reliable results. Given the complexity of the issue, obtaining a realistic picture of lifelong alcoholemia requires supporting blood ethanol findings with analyses of alternative samples, primarily vitreous humor (VH).
Objective: The objective of this study was to develop and validate a headspace gas chromatography with flame ionization detection (HS/GC-FID) method for determining ethanol concentration in VH.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!