Background: Genetic variations of the dopamine and opioid receptors could influence the response to methadone maintenance treatment (MMT).
Methods: We included 238 MMT patients according to their response to treatment and methadone dosing, along with 217 subjects without substance dependence. All were genotyped for polymorphisms of the dopamine D1, D2, micro-opioid and delta-opioid receptor genes.
Results: The polymorphisms of the micro-opioid (118A>G), delta-opioid (921T>C), dopamine D1 (DdeI) and D2 (TaqI A) receptor genes were not associated with response to MMT and methadone dosing, whereas an association was found with the dopamine D2 receptor (DRD2) 957C>T polymorphism. The 957CC carriers were more frequently non-responders to treatment (OR=2.4; p=0.02) and presented a fourfold shorter period of negative urine screening (p=0.02). No significant differences in allele frequencies were observed between the MMT patients and the control group, suggesting no association of the analyzed polymorphisms with opioid dependence.
Conclusions: These results suggest that DRD2 genotype may contribute to the understanding of the interindividual variability to the response to MMT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2008.07.009 | DOI Listing |
J Neurol
January 2025
Parkinson's Disease Research Clinic, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
Impulse Control Disorders (ICDs) are increasingly recognized as a significant non-motor complication in Parkinson's disease (PD), impacting patients and their caregivers. ICDs in PD are primarily associated with dopaminergic treatments, particularly dopamine agonists, though not all patients develop these disorders, indicating a role for genetic and other clinical factors. Studies over the past few years suggest that the mesocorticolimbic reward system, a core neural substrate for impulsivity, is a key contributor to ICDs in PD.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.
View Article and Find Full Text PDFNat Commun
January 2025
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Kgs., Lyngby, Denmark.
The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
Background And Aim: (CM) and (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia.
Experimental Procedure: Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols.
Pharmacol Res Perspect
February 2025
New Drug Development Center, Daegu, Korea.
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!