Chondroitin-4-sulfate was oversulfated using chlorosulfonic acid-pyridine complex and was isolated as the sodium salt. A comparison of the infrared analysis of the native (N-2) and oversulfated (S-2) compounds showed that the two spectra were identical except for a new peak in S-2 at 825 cm corresponding to the equatorial C-6 position of galactosamine. There was a 2.7-fold increase of sulfate content in S-2 and a generation of a significant anticoagulant activity as measured by doubling of the prothrombin time of normal citrated human plasma using 7.5 microg, while N-2 was inactive even at 2,000 microg. The result of the in-vitro studies of the activation of glutamic plasminogen by tissue plasminogen activator (t-PA) or by high-molecular-weight urokinase using 0.05 mol/l Tris buffer (pH 7.35) containing a physiological concentration of NaCl (0.9%) showed that 28.6 microg/ml S-2 enhanced the activation by three-fold to four-fold by t-PA or by urokinase, while the same concentrations of N-2 or unfractionated heparin gave less than 30% enhancement of t-PA and no enhancement of urokinase. The mechanism of enhancement by S-2 was investigated by dilution studies. The results showed that S-2 interacted with both urokinase or t-PA and glutamic plasminogen favoring a template model, while N-2 or unfractionated heparin interacted only with t-PA.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MBC.0b013e3282f2a99eDOI Listing

Publication Analysis

Top Keywords

glutamic plasminogen
8
n-2 unfractionated
8
unfractionated heparin
8
s-2
6
t-pa
5
oversulfation chemical
4
chemical biological
4
biological properties
4
properties chondroitin-4-sulfate
4
chondroitin-4-sulfate chondroitin-4-sulfate
4

Similar Publications

A chimeric peptide promotes immune surveillance of senescent cells in injury, fibrosis, tumorigenesis and aging.

Nat Aging

December 2024

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

The accumulation of senescent cells can lead to tissue degeneration, chronic inflammatory disease and age-related tumorigenesis. Interventions such as senolytics are currently limited by off-target toxicity, which could be circumvented by instead enhancing immune-mediated senescent cell clearance; however, immune surveillance of senescent cells is often impeded by immunosuppressive factors in the inflammatory microenvironment. Here, we employ a chimeric peptide as a 'matchmaker' to bind to the urokinase-type plasminogen activator receptor, a cell surface marker of senescent cells.

View Article and Find Full Text PDF

Stroke remains a leading cause of mortality and disability, with ischemic stroke being the most common type. It occurs due to reduced cerebral blood flow, leading to a cascade of events initiated by oxygen and nutrient deprivation, triggering excitotoxicity, oxidative stress, and inflammation and finally culminating in neuronal injury and death. Key molecular players in ischemic stroke include glutamate receptors, acid-sensing ion channels, and purinergic receptors, exacerbating cellular damage through calcium influx, oxidative stress, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain.

Neuroscience

July 2024

Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA. Electronic address:

The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme.

View Article and Find Full Text PDF

Neural regeneration and neuroprotection represent strategies for future management of neurodegenerative disorders such as Alzheimer's disease (AD) or glaucoma. However, the complex molecular mechanisms that are involved in neuroprotection are not clearly understood. A promising candidate that maintains neuroprotective signaling networks is neuroserpin (Serpini1), a serine protease inhibitor expressed in neurons which selectively inhibits extracellular tissue-type plasminogen activator (tPA)/plasmin and plays a neuroprotective role during ischemic brain injury.

View Article and Find Full Text PDF

Surface-Tailored Nanoplatform for the Diagnosis and Management of Stroke: Current Strategies and Future Outlook.

Mol Neurobiol

March 2024

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER) Raebareli (An Institute of National Importance Under Dept. of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Stroke accounts for one of the top leading reasons for neurological mortality and morbidity around the globe. Both ischemic and hemorrhagic strokes lead to local hypoxia and are brought about by the occlusion or rupturing of the blood vessels. The events taking place after the onset of a stroke include membrane ion pump failure, calcium and glutamate-mediated excitotoxicity, increased ROS production causing DNA damage, mitochondrial dysfunction, oxidative stress, development of brain edema, and microvascular dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!