In multiple sclerosis (MS) disability results from neuronal and axonal loss, the hallmark of neurodegenerative diseases (ND). Neurodegeneration is initiated by microglia activation and mediated by oxidative stress and excitotoxicity. The same sequence of events has been consistently observed in MS. However, microglia activation correlates with a marked cell infiltration in MS but not in ND. In both pathological states, peroxynitrite is the common initiating factor of oxidative stress and excitotoxicity and is thus a potential interesting therapeutic target. Oxidative stress leads to multiple lipid and protein damages via peroxidation and nitration processes. The pathomechanisms of excitotoxicity are complex involving glutamate overload, ionic channel dysfunction, calcium overload, mitochondriopathy, proteolytic enzyme production and activation of apoptotic pathways. The inflammatory component in MS is important for the design of therapeutic strategies. Inflammation not only causes axonal and neuronal loss but it also initiates the degenerative cascade in the early stage of MS. Potent anti-inflammatory agents are now available and it is not unreasonable to think that an early blockade of inflammatory processes might also block associated degenerative mechanisms and delay disability progression. The development of neuroprotective drugs is more problematic. Indeed, given the multiple and parallel mechanisms involved in neurodegeneration, modulation of a single specific pathway will likely yield a partial benefit if any.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2008.06.029DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress excitotoxicity
12
multiple sclerosis
8
microglia activation
8
neurodegeneration multiple
4
sclerosis role
4
oxidative
4
role oxidative
4
stress
4
excitotoxicity
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!