A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FAMBE-pH: a fast and accurate method to compute the total solvation free energies of proteins. | LitMetric

A fast and accurate method to compute the total solvation free energies of proteins as a function of pH is presented. The method makes use of a combination of approaches, some of which have already appeared in the literature; (i) the Poisson equation is solved with an optimized fast adaptive multigrid boundary element (FAMBE) method; (ii) the electrostatic free energies of the ionizable sites are calculated for their neutral and charged states by using a detailed model of atomic charges; (iii) a set of optimal atomic radii is used to define a precise dielectric surface interface; (iv) a multilevel adaptive tessellation of this dielectric surface interface is achieved by using multisized boundary elements; and (v) 1:1 salt effects are included. The equilibrium proton binding/release is calculated with the Tanford-Schellman integral if the proteins contain more than approximately 20-25 ionizable groups; for a smaller number of ionizable groups, the ionization partition function is calculated directly. The FAMBE method is tested as a function of pH (FAMBE-pH) with three proteins, namely, bovine pancreatic trypsin inhibitor (BPTI), hen egg white lysozyme (HEWL), and bovine pancreatic ribonuclease A (RNaseA). The results are (a) the FAMBE-pH method reproduces the observed pK a's of the ionizable groups of these proteins within an average absolute value of 0.4 p K units and a maximum error of 1.2 p K units and (b) comparison of the calculated total pH-dependent solvation free energy for BPTI, between the exact calculation of the ionization partition function and the Tanford-Schellman integral method, shows agreement within 1.2 kcal/mol. These results indicate that calculation of total solvation free energies with the FAMBE-pH method can provide an accurate prediction of protein conformational stability at a given fixed pH and, if coupled with molecular mechanics or molecular dynamics methods, can also be used for more realistic studies of protein folding, unfolding, and dynamics, as a function of pH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760452PMC
http://dx.doi.org/10.1021/jp709969nDOI Listing

Publication Analysis

Top Keywords

solvation free
16
free energies
16
total solvation
12
ionizable groups
12
fast accurate
8
method
8
accurate method
8
method compute
8
compute total
8
energies proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!