Quantum dot fluorescence as a function of alkyl chain length in aqueous environments.

Langmuir

Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA.

Published: September 2008

In this work, we examine the dependence of the fluorescence quantum yield of water-soluble CdSe/ZnS quantum dots on the local environment. The hydrophobicity of the local environment was modified by using different alkyl chain lengths in a set of oligo-ethylene glycols. Our results show that the quantum yield of CdSe/ZnS quantum dots is highest for the longest alkyl chain length, suggesting that a more hydrophobic environment is beneficial for generating bright, water-soluble quantum dots.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la800932bDOI Listing

Publication Analysis

Top Keywords

alkyl chain
12
quantum dots
12
chain length
8
quantum yield
8
cdse/zns quantum
8
local environment
8
quantum
6
quantum dot
4
dot fluorescence
4
fluorescence function
4

Similar Publications

Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Covalent Adaptable Poly[2]rotaxane Networks via Dynamic C-N Bond Transalkylation.

Angew Chem Int Ed Engl

January 2025

Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.

Covalent adaptable networks (CANs), a novel class of crosslinked polymers with dynamic covalent bonds, have gained significant attention for combining the durability of thermosets with the reprocessability of thermoplastics, making them promising for emerging applications. Here, we report the first example of poly[2]rotaxane-type CANs (PRCANs), in which oligo[2]rotaxane backbones characterized by densely packed mechanical bonds, are cross-linked through dynamic C-N bond. Oligo[2]rotaxane backbones could guarantee the mechanical properties of CANs.

View Article and Find Full Text PDF

Unsymmetric triazine-based triglucoside detergents for membrane protein stability.

Chembiochem

January 2025

Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 15588, Ansan, KOREA, REPUBLIC OF.

Membrane proteins play a crucial role in a variety of biological processes and are key targets for pharmaceutical development. Structural studies of membrane proteins provide molecular insights into the mechanisms of these processes and are essential for effective drug discovery. Historically, these studies have relied on solubilization of the target protein using detergents, but conventional detergents often fail to maintain the stability of challenging membrane proteins.

View Article and Find Full Text PDF

Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy.

Small

January 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!