Methane storage in dry water gas hydrates.

J Am Chem Soc

Department of Chemistry and Centre for Materials Discovery, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.

Published: September 2008

Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja8048173DOI Listing

Publication Analysis

Top Keywords

dry water
12
methane storage
8
storage dry
8
methane
4
water
4
water gas
4
gas hydrates
4
hydrates dry
4
water stores
4
stores 175
4

Similar Publications

Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.

View Article and Find Full Text PDF

Bulk-fill, monochromatic, and ORMOCER composites were introduced in restorative dentistry with the aim of reducing clinical time and/or alleviating contraction stresses at the interface between the tooth and restoration. While the conversion and immediate properties of these materials are comparable to conventional composites, studies evaluating their long-term properties and the structure of the polymer matrix are lacking. The objective of this study was to evaluate the degree of conversion and, indirectly, the crosslink density of conventional, bulk-fill, monochromatic, and ORMOCER resin composites.

View Article and Find Full Text PDF

Anti-wetting wing surface characteristics of a water bug, Diplonychus annulatus.

Biosystems

January 2025

Additive Manufacturing Research laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Jammu, Jammu 181221, J&K, India. Electronic address:

Diplonychus annulatus sp. (family Belostomidae and order Hemipetra) is an aquatic water bug, adapted to ponds and wetlands. Commonly referred to as toe-biters or electric-light bugs, both the nymph and the adults prey on other invertebrates in the water.

View Article and Find Full Text PDF

Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.

View Article and Find Full Text PDF

Factors Relating to Sprint Swimming Performance: A Systematic Review.

Sports Med

January 2025

Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.

Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!