Epidermis and dermis form an integral morphofunctional area, where cambial cells proliferate and their first-division daughter cells differentiate. An important feature of this area is different rates of the development of daughter cells (fibroblasts) in the dermis and epidermis, which is greater in the epidermis. This asymmetry results in the prevalence of first epidermal daughter cells and, hence, their effect on cambial cells, and then of stromal daughter cells and their effects on cambial cells. The regulator factors of epidermal daughter cells promote unblocking of the major polarity axis of cambial (mother) cell, while stromal cells (fibroblasts) induce their polarization along the major axis and the onset of mitosis. In the dermis and epidermis, division of cambial cells is asymmetric; a prominent role in the formation of mother and daughter cells is given to the basal membrane as an elastic support. Mother and daughter cells form ring-like structures generating electric field that can promote differentiation of the daughter cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-007-0423-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!