This study deals with the scale of a new photobioreactor for continuous microalgal production in hatcheries. The combination of the state-of-art with the constraints inherent to hatcheries has turned the design into a closed, artificially illuminated and external-loop airlift configuration based on a succession of elementary modules, each one being composed of two transparent vertical interconnected columns. The liquid circulation is ensured pneumatically (air injections) with respect to a swirling motion (tangential inlets). A single module of the whole photobioreactor was built-up to scale its geometry (diameter and length) and to optimize its design (air sparger, tangential inlets). The volumetric productivities were predicted by modeling radiative transfer and growth of Isochrysis affinis galbana (clone Tahiti). The hydrodynamics of the liquid phase was modeled in terms of global flow behavior (circulation and mixing times, Péclet number) and of swirling motion decay along the column (Particle Image Velocimetry). The aeration performances were determined by overall volumetric mass transfer measurements. Continuous cultures of Isochrysis affinis galbana (clone Tahiti) were run in two geometrical configurations, generating either an axial or a swirling flow. Lastly, the definitive options of design are presented as well as a 120-L prototype, currently implemented in a French mollusk hatchery and commercialized.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22035DOI Listing

Publication Analysis

Top Keywords

photobioreactor continuous
8
continuous microalgal
8
microalgal production
8
production hatcheries
8
external-loop airlift
8
swirling flow
8
swirling motion
8
tangential inlets
8
isochrysis affinis
8
affinis galbana
8

Similar Publications

Algal-bacterial bioremediation of cyanide-containing wastewater in a continuous stirred photobioreactor.

World J Microbiol Biotechnol

January 2025

The Biotechnology Center, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

This study reports the isolation and characterization of highly resistant bacterial and microalgal strains from an Egyptian wastewater treatment station to cyanide-containing compounds. The bacterial strain was identified as Bacillus licheniformis by 16S rRNA gene sequencing. The isolate removed up to 1 g L potassium cyanide, 3 g L benzonitrile, and 1 g L sodium salicylate when incubated as 10% v/v in MSM at 30 ℃.

View Article and Find Full Text PDF

Natural pigments and biogas recovery from cyanobacteria grown in treated wastewater. Fate of organic microcontaminants.

Water Res

December 2024

GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:

Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.

View Article and Find Full Text PDF

This research looked at how three different light intensities (1600, 4300, and 7200 lx) affect the biomass development, treatment of fuel synthesis wastewater and the recovery of valuable bioproducts between biofilm and suspended growth in a purple-bacteria enriched photobioreactor. Each condition was run in duplicate using an agricultural shade cloth as the biofilm support media in a continuously mixed batch reactor. The results showed that the highest chemical oxygen demand (COD) removal rate (56.

View Article and Find Full Text PDF

cf. (dinoflagellate): identification and response to nickel and iron stress revealed through chlorophyll .

Photosynthetica

January 2024

Ifremer, IRD, University of New Caledonia, University of La Réunion, CNRS, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia.

Metal toxicity in marine ecosystems is a growing issue owing to terrestrial runoff and anthropogenic pollution. cf. , a newly isolated dinoflagellate from New Caledonia, was cultivated in photobioreactors operating continuously with high concentrations of nickel (1.

View Article and Find Full Text PDF

Metabolic coupling of aerobic methane oxidation and short-cut nitrification and denitrification for anaerobic effluent treatment in photo-sequencing batch biofilm reactor.

Bioresour Technol

February 2025

Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China; Chongqing Key Lab for Innovative Application of Gene Technology, Chongqing 400715, China. Electronic address:

This study explored the use of algae to supply oxygen in situ as an alternative to mechanical aeration for anaerobic effluent treatment in a photo-sequencing batch biofilm reactor (PSBBR). By establishing alternating aerobic (dissolved oxygen (DO) > 2 mg /L)/anoxic conditions (<0.5 mg-DO/L) through a 6-h off/6-h on biogas sparging cycle and continuous illumination (1500-3000 lux), the PSBBR achieved a significant ammonia removal rate of 15-25 mg N Ld.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!