Survival of the sparsest: robust gene networks are parsimonious.

Mol Syst Biol

Wagner Lab, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.

Published: October 2008

Biological gene networks appear to be dynamically robust to mutation, stochasticity, and changes in the environment and also appear to be sparsely connected. Studies with computational models, however, have suggested that denser gene networks evolve to be more dynamically robust than sparser networks. We resolve this discrepancy by showing that misassumptions about how to measure robustness in artificial networks have inadvertently discounted the costs of network complexity. We show that when the costs of complexity are taken into account, that robustness implies a parsimonious network structure that is sparsely connected and not unnecessarily complex; and that selection will favor sparse networks when network topology is free to evolve. Because a robust system of heredity is necessary for the adaptive evolution of complex phenotypes, the maintenance of frugal network complexity is likely a crucial design constraint that underlies biological organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538912PMC
http://dx.doi.org/10.1038/msb.2008.52DOI Listing

Publication Analysis

Top Keywords

gene networks
12
dynamically robust
8
sparsely connected
8
network complexity
8
networks
6
survival sparsest
4
robust
4
sparsest robust
4
robust gene
4
networks parsimonious
4

Similar Publications

SARS-CoV-2 infection is accompanied by elevated liver enzymes, and patients with pre-existing liver conditions experience more severe disease. While it was known that SARS-CoV-2 infects human hepatocytes, our study determines the mechanism of infection, demonstrates viral replication and spread, and highlights direct hepatocyte damage. Viral replication was readily detectable upon infection of primary human hepatocytes and hepatoma cells with the ancestral SARS-CoV-2, Delta, and Omicron variants.

View Article and Find Full Text PDF

, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.

View Article and Find Full Text PDF

CENPE is a diagnostic and prognostic biomarker for cervical cancer.

Heliyon

December 2024

Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.

Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.

View Article and Find Full Text PDF

Motivation: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a ground-breaking genome editing tool, which has revolutionized cell and gene therapies. One of the essential components involved in this system that ensures its success is the design of an optimal single-guide RNA (sgRNA) with high on-target cleavage efficiency and low off-target effects. This is challenging as many conditions need to be considered, and empirically testing every design is time-consuming and costly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!