Purpose: To investigate the possible protective effects of aminoguanidine (AG ) on lung damage in whole body irradiated rats.

Methods: To evaluate the biological damage of radiation on rat lung tissue, lipid peroxidation products were measured using biochemical parameters. Thirty Wistar albino rats were divided into three subgroups: control (C) , irradiation alone (RT), and RT + AG combined. After sacrificing the rats, antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and malondiadehyde (MDA), nitric oxide (NO) levels were evaluated in lung tissue.

Results: Administration of AG resulted in an increase in the activities of CAT, SOD and GSHPx in the lungs. All were reduced after radiation. In addition, AG administration resulted in a decrease in both NO and MDA levels in lung compared with the irradiated group.

Conclusion: Amnoguanidine increased the endogenous antioxidant defence mechanism in rats and protected the animals from radiation-induced lung toxicity. Moreover, AG may protect against ionizing radiation-induced lung damage because of its antioxidant effect.

Download full-text PDF

Source
http://dx.doi.org/10.25011/cim.v31i4.4778DOI Listing

Publication Analysis

Top Keywords

lung damage
12
radiation-induced lung
8
lung
7
aminoguanidine ameliorates
4
ameliorates radiation-induced
4
radiation-induced oxidative
4
oxidative lung
4
damage
4
rats
4
damage rats
4

Similar Publications

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline.

View Article and Find Full Text PDF

Nitric oxide synthase inhibitors reduce the formation of neutrophil extracellular traps and alleviate airway inflammation in the mice model of asthma.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.

Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model.

View Article and Find Full Text PDF

Background: Tuberculosis is one of the leading causes of death from infectious diseases in the world, with approximately 25% of the global population having latent tuberculosis infection. Secondhand smoke exposure has been recognised as a significant risk factor in the development of active Tuberculosis in individuals with latent tuberculosis infection.

Study Design And Methods: This study used the Systematic Literature Review method based on PRISMA guidelines.

View Article and Find Full Text PDF

Effect of the S100A9/AMPK pathway on PM2.5-mediated mouse lung injury.

Iran J Basic Med Sci

January 2025

Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.

Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.

View Article and Find Full Text PDF

Introduction: There is substantial interest in the association of vaping e-cigarettes with the risk of cancer. We analyzed this risk in different populations by updating the Kings College London (KCL) review to include the period between July 2021 and December 2023.

Methods: We searched six databases and included peer-reviewed human, animal, and cell/ original studies examining the association between e-cigarettes and cancer risk, but we excluded qualitative studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!