The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P < 0.001) and group 1 (16.9 +/- 1.1%, P < 0.001). Immunostaining for CD31 showed significantly increased capillary density in group 3 (14.88 +/- 0.9) compared with group 2 (8.5 +/- 0.49, P < 0.001) and group 1 (5.69 +/- 0.3, P < 0.001). Improved blood flow (ml/min./g) was achieved in animal group 3 (0.173 +/- 0.04) as compared with animal group 2 (0.122 +/- 0.016; P= 0.047) and group 1 (0.062 +/- 0.012; P < 0.001). In conclusion, CD liposome mediated VEGF(165) gene transfer with SkMs effectively induced neovascularization in the ischaemic hind limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837621 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2008.00454.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!