The problem of the derivation of the diffusion equation exactly following from the Fokker-Planck (or Klein-Kramers) equation for heavy (or large) particles in a fluid in an external force field is solved in the case in which the particles are ions subject to a uniform (but in general time-varying) electric field. It is found that such a diffusion equation maintains memory of the initial ion velocity distribution, unless sufficiently large values of time are considered. In such temporal asymptotic limit, the diffusion equation exactly becomes (i) the Smoluchowski equation when the electric field is constant in time, and (ii) a new equation generalizing the Smoluchowski equation, when the electric field is arbitrarily time varying. Finally, it is shown that the obtained exact (or asymptotic) results make questionable the procedures and the results of approximate theories developed in the past to get a "corrected" Smoluchowski equation when the external force can also be, in general, position dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2957461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!