The potential energy surface for the electronic ground state of PH(3) was calculated at the CCSD(T) level using aug-cc-pV(Q+d)Z and aug-cc-pVQZ basis sets for P and H, respectively, with scalar relativistic corrections included. A parametrized function was fitted through these ab initio points, and one parameter of this function was empirically adjusted. This analytical PES was employed in variational calculations of vibrational energies with the newly developed program TROVE. The convergence of the calculated vibrational energies with increasing vibrational basis set size was improved by means of an extrapolation scheme analogous to the complete basis set limit schemes used in ab initio electronic structure calculations. The resulting theoretical energy values are in excellent agreement with the available experimentally derived values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2956488 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!