The issue of the influence of wall vibrations on the behavior of wind instruments is still under debate. The mechanisms of vibroacoustic couplings involved in these vibrations are difficult to investigate, as fluid-structure interactions are weak. Among these vibroacoustic interactions, the present study is focused on the coupling between the internal acoustic field and the mechanical behavior of the duct. For this purpose, a simplified single reed instrument consisting of a brass tube connected to a clarinet mouthpiece has been studied. A theoretical model of coupling between the plane inner acoustic wave and mechanical modes is developed and suggests that in order to obtain measurable effects of wall vibrations, the geometrical parameters of the studied tube have to be unusual compared to that of real instruments. For a slightly oval-shaped and very thin brass tube, it is shown theoretically and experimentally that a coupling between the inner plane acoustic wave and ovalling mechanical modes occurs and results in disturbances of the input impedance, which can slightly affect the tone color of the sound produced. It is concluded that the reported effects are unlikely to occur in real instruments except for some organ pipes.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2945157DOI Listing

Publication Analysis

Top Keywords

wall vibrations
12
influence wall
8
vibrations behavior
8
brass tube
8
acoustic wave
8
mechanical modes
8
real instruments
8
vibrations
4
behavior simplified
4
simplified wind
4

Similar Publications

Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.

View Article and Find Full Text PDF

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

Effect of respiration and exercise on seismocardiographic signals.

Comput Biol Med

December 2024

Department of Mechanical and Aerospace Engineering, University of Central Florida, and the Biomedical Acoustics Research Company, 32816, Orlando, FL, USA.

Background: Seismocardiographic signals (SCG) are chest wall vibrations induced by mechanical cardiac activities. This study investigated the morphological changes in the SCG signal due to respiration and exercise.

Methods: Fifteen healthy subjects were recruited, and SCG was acquired before and after exercise.

View Article and Find Full Text PDF

The effect of micro-vessel viscosity on the resonance response of a two-microbubble system.

Ultrasonics

December 2024

Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada. Electronic address:

Clinical ultrasound contrast agent microbubbles remain intravascular and are between 1-8 µm in diameter, with a volume-weighted mean size of 2-3 µm. Despite their worldwide clinical utility as a diagnostic contrast agent, and their continued and ongoing success as a local therapeutic vector, the fundamental interplay between microbubbles - including bubble-bubble interaction and the effects of a neighboring viscoelastic vessel wall, remain poorly understood. In this work, we developed a finite element model to study the physics of the complex system of two different-sized bubbles (2 and 3 µm in diameter) confined within a viscoelastic vessel from a resonance response perspective (3-12 MHz).

View Article and Find Full Text PDF

This study develops a dynamics model of a microrobot vibrating in a blood vessel aiming to detect potential cancer metastasis. We derive an analytical solution for microrobot's motion, considering interactions with the vessel walls modelled by a linear spring-dashpot and a constant damping value for blood viscosity. The model facilitates instantaneous state transitions of the microrobot, such as contact with the vessel wall and free motion within the fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!