Prediction of the acoustic form function by neural network techniques for immersed tubes.

J Acoust Soc Am

Département de Physique, Laboratoire de Métrologie et Traitement de l'Information, Université Ibn Zohr Faculté des Sciences, Agadir, Morocco.

Published: August 2008

A new approach is used to predict the acoustic form function (FF) for an infinite length cylindrical shell excited perpendicularly to its axis using the artificial neural network (ANN) techniques. The Wigner-Ville distribution is used like a comparison tool between the FF calculated by the analytical method and that predicted by the ANN techniques for a stainless steel tube. During the development of the network, several configurations are evaluated for various radius ratios ba (a: outer radius: b: inner radius of the tube). The optimal model is a network with one hidden layer. It is able to predict the FF with a mean relative error about 1.61% for the cases studied in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2945164DOI Listing

Publication Analysis

Top Keywords

acoustic form
8
form function
8
neural network
8
ann techniques
8
prediction acoustic
4
function neural
4
network
4
network techniques
4
techniques immersed
4
immersed tubes
4

Similar Publications

In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.

View Article and Find Full Text PDF

Background: The two most commonly used methods to identify frailty are the frailty phenotype and the frailty index. However, both methods have limitations in clinical application. In addition, methods for measuring frailty have not yet been standardized.

View Article and Find Full Text PDF

When listening to speech under adverse conditions, listeners compensate using neurocognitive resources. A clinically relevant form of adverse listening is listening through a cochlear implant (CI), which provides a spectrally degraded signal. CI listening is often simulated through noise-vocoding.

View Article and Find Full Text PDF

Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview.

J Speech Lang Hear Res

January 2025

Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.

View Article and Find Full Text PDF

Contagious crying in infants has been considered an early marker of their sensitivity to others' emotions, a form of emotional contagion, and an early basis for empathy. However, it remains unclear whether infant distress in response to peer distress is due to the emotional content of crying or acoustically aversive properties of crying. Additionally, research remains severely biased towards samples from Europe and North America.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!