Marijuana (Cannabis sativa) has long been known to contain antibacterial cannabinoids, whose potential to address antibiotic resistance has not yet been investigated. All five major cannabinoids (cannabidiol (1b), cannabichromene (2), cannabigerol (3b), Delta (9)-tetrahydrocannabinol (4b), and cannabinol (5)) showed potent activity against a variety of methicillin-resistant Staphylococcus aureus (MRSA) strains of current clinical relevance. Activity was remarkably tolerant to the nature of the prenyl moiety, to its relative position compared to the n-pentyl moiety (abnormal cannabinoids), and to carboxylation of the resorcinyl moiety (pre-cannabinoids). Conversely, methylation and acetylation of the phenolic hydroxyls, esterification of the carboxylic group of pre-cannabinoids, and introduction of a second prenyl moiety were all detrimental for antibacterial activity. Taken together, these observations suggest that the prenyl moiety of cannabinoids serves mainly as a modulator of lipid affinity for the olivetol core, a per se poorly active antibacterial pharmacophore, while their high potency definitely suggests a specific, but yet elusive, mechanism of activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np8002673 | DOI Listing |
Molecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P R China.
Prenylation modifications of natural products play essential roles in chemical diversity and bioactivities, but imidazole modification prenyltransferases are not well investigated. Here, we discover a dimethylallyl tryptophan synthase family prenyltransferase, AuraA, that catalyzes the rare dimethylallylation on the imidazole moiety in the biosynthesis of aurantiamine. Biochemical assays validate that AuraA could accept both cyclo-(L-Val-L-His) and cyclo-(L-Val-DH-His) as substrates, while the prenylation modes are completely different, yielding C2-regular and C5-reverse products, respectively.
View Article and Find Full Text PDFRSC Adv
October 2024
Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine Jammu 180001 India
Isobavachalcone (IBC) is a natural prenylated flavonoid containing chalcone and prenyl chain moieties with a wide range of biological and pharmacological properties. In this work, we synthesized structurally diversified derivatives (IBC-2 to IBC-10) from the natural prenylated chalcone IBC isolated from and assessed their antibacterial potency against the Gram-positive and Gram-negative bacterial strains ATCC 29213, ATCC 15187, ATCC25922 and ATCC 27853. IBC and IBC-2 exhibited a minimum inhibition concentration (MIC) of 5.
View Article and Find Full Text PDFChem
October 2024
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland.
Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C (farnesyl) and C (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
Xanthohumol () is a major prenylated flavonoid in hops ( L.) which exhibits a broad spectrum of health-promoting and therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer effects. However, due to its lipophilic nature, it is poorly soluble in water and barely absorbed from the gastrointestinal tract, which greatly limits its therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!