The success of the World Health Organization smallpox eradication program three decades ago resulted in termination of routine vaccination and consequent decline in population immunity. Despite concerns regarding the reintroduction of smallpox, there is little enthusiasm for large-scale redeployment of licensed live vaccinia virus vaccines because of medical contraindications and anticipated serious side effects. Therefore, highly attenuated strains such as modified vaccinia virus Ankara (MVA) are under evaluation in humans and animal models. Previous studies showed that priming and boosting with MVA provided protection for >2 years in a monkeypox virus challenge model. If variola virus were used as a biological weapon, however, the ability of a vaccine to quickly induce immunity would be essential. Here, we demonstrate more rapid immune responses after a single vaccination with MVA compared to the licensed Dryvax vaccine. To determine the kinetics of protection of the two vaccines, macaques were challenged intravenously with monkeypox virus at 4, 6, 10, and 30 days after immunization. At 6 or more days after vaccination with MVA or Dryvax, the monkeys were clinically protected (except for 1 of 16 animals vaccinated with MVA), although viral loads and number of skin lesions were generally higher in the MVA vaccinated group. With only 4 days between immunization and intravenous challenge, however, MVA still protected whereas Dryvax failed. Protection correlated with the more rapid immune response to MVA compared to Dryvax, which may be related to the higher dose of MVA that can be tolerated safely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2495015 | PMC |
http://dx.doi.org/10.1073/pnas.0804985105 | DOI Listing |
Front Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Oncolytic vaccinia viruses (VVs) are potent stimulators of the immune system and induce immune-mediated tumor clearance and long-term surveillance against tumor recurrence. As such they are ideal treatment modalities for solid tumors including lung cancer. Here, we investigated the use of VVL-m12, a next-generation, genetically modified, interleukin-12 (IL-12)-armed VV, as a new therapeutic strategy to treat murine models of lung cancer and as a mechanism of increasing lung cancer sensitivity to antibody against programmed cell death protein 1 (α-PD1) therapy.
View Article and Find Full Text PDFLancet Microbe
January 2025
Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK.
Background: In May, 2022, the first global outbreak of mpox (formerly known as monkeypox) occurred. In response, public health agencies in the UK have made smallpox vaccines available to individuals at the highest risk of infection. With mpox cases still being detected globally, novel tools are required to aid with diagnosis, serosurveillance, and the evaluation of immune responses following infection and immunisation with current and new vaccine candidates.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFJ Med Virol
January 2025
Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil.
An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!