Intestinal microbiota comprises microbial communities that reside in the gastrointestinal tract and are critical to normal host physiology. Understanding the microbiota's role in host response to invading pathogens will further advance our knowledge of host-microbe interactions. Salmonella enterica serovar Typhimurium was used as a model enteric pathogen to investigate the effect of intestinal microbiota perturbation on host susceptibility to infection. Antibiotics were used to perturb the intestinal microbiota. C57BL/6 mice were treated with clinically relevant doses of streptomycin and vancomycin in drinking water for 2 days, followed by oral infection with Salmonella enterica serovar Typhimurium. Alterations in microbiota composition and numbers were evaluated by fluorescent in situ hybridization, differential plating, and Sybr green staining. Antibiotics had a dose-dependent effect on intestinal microbiota composition. The chosen antibiotic regimen did not significantly alter the total numbers of intestinal bacteria but altered the microbiota composition. Greater preinfection perturbations in the microbiota resulted in increased mouse susceptibility to Salmonella serovar Typhimurium intestinal colonization, greater postinfection alterations in the microbiota, and more severe intestinal pathology. These results suggest that antibiotic treatment alters the balance of the microbial community, which predisposes the host to Salmonella serovar Typhimurium infection, demonstrating the importance of a healthy microbiota in host response to enteric pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546810PMC
http://dx.doi.org/10.1128/IAI.00319-08DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
20
serovar typhimurium
16
microbiota composition
12
microbiota
10
intestinal
8
host susceptibility
8
host response
8
salmonella enterica
8
enterica serovar
8
alterations microbiota
8

Similar Publications

Development and Evaluation of Non-Antibiotic Growth Promoters for Food Animals.

Vet Sci

December 2024

National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China.

The widespread utilization of antibiotic growth promoters (AGPs) boosts the growth rate of food animals and enhances human living standards. Nevertheless, it is accompanied by escalating antibiotic resistance. Consequently, there is an urgent demand to develop novel alternatives to growth promoters.

View Article and Find Full Text PDF

Exploring the Gastrointestinal Microbiome of Eurasian Griffon Vultures () Under Rehabilitation in Portugal and Their Potential Role as Reservoirs of Human and Animal Pathogens.

Vet Sci

December 2024

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

The Eurasian griffon vulture (), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens.

View Article and Find Full Text PDF

Larvae Meal (HILM) has been observed to enhance growth performance and immune function, yet the effects and mechanisms in geese remain less understood. Experiment I included 64 Sichuan White Geese to investigate the optimal additive amount of HILM in diet, and experiment II included 32 Sichuan White Geese to access serum immunoglobulin, spleen immune-related genes, intestinal morphology and gut microbiota at the optimal additive amount of HILM. The results showed that the addition of 1% HILM significantly increased the ADG of Sichuan White Geese ( < 0.

View Article and Find Full Text PDF

A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B.

Toxins (Basel)

November 2024

Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

Aflatoxin B is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.

View Article and Find Full Text PDF

Background: Using dietary interventions to steer the metabolic output of the gut microbiota towards specific health-promoting metabolites is often challenging due to interpersonal variation in treatment responses.

Methods: In this study, we combined the ex vivo SIFR (Systemic Intestinal Fermentation Research) technology with untargeted metabolite profiling to investigate the impact of carrot-derived rhamnogalacturonan-I (cRG-I) on ex vivo metabolite production by the gut microbiota of 24 human adults.

Results: The findings reveal that at a dose equivalent to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!