Autosomal dominant optic atrophy (ADOA), the commonest cause of inherited optic atrophy, is caused by mutations in the ubiquitously expressed gene optic atrophy 1 (OPA1), involved in fusion and biogenesis of the inner membrane of mitochondria. Bioenergetic failure, mitochondrial network abnormalities and increased apoptosis have all been proposed as possible causal factors. However, their relative contribution to pathogenesis as well as the prominent susceptibility of the retinal ganglion cell (RGC) in this disease remains uncertain. Here we identify a novel deletion of OPA1 gene in the GTPase domain in three patients affected by ADOA. Muscle biopsy of the patients showed neurogenic atrophy and abnormal morphology and distribution of mitochondria. Confocal microscopy revealed increased mitochondrial fragmentation in fibroblasts as well as in myotubes, where mitochondria were also unevenly distributed, with clustered organelles alternating with areas where mitochondria were sparse. These abnormalities were not associated with altered bioenergetics or increased susceptibility to pro-apoptotic stimuli. Therefore, changes in mitochondrial shape and distribution can be independent of other reported effects of OPA1 mutations, and therefore may be the primary cause of the disease. The arrangement of mitochondria in RGCs, which degenerate in ADOA, may be exquisitely sensitive to disturbance, and this may lead to bioenergetic crisis and/or induction of apoptosis. Our results highlight the importance of mitochondrial dynamics in the disease per se, and point to the loss of the fine positioning of mitochondria in the axons of RGCs as a possible explanation for their predominant degeneration in ADOA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddn225DOI Listing

Publication Analysis

Top Keywords

optic atrophy
12
novel deletion
8
gtpase domain
8
morphology distribution
8
mitochondria
6
mitochondrial
5
deletion gtpase
4
opa1
4
domain opa1
4
opa1 defects
4

Similar Publications

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Ocular and neurological manifestations of the FDXR-related disorder.

J AAPOS

December 2024

Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia. Electronic address:

The FDXR-related disorder is caused by pathogenic variants in the FDXR gene. Including our case, a total of 47 patients have been reported. The most common genotypes are the homozygous c.

View Article and Find Full Text PDF

The aim of the study was to determine the thickness of choroidal layers in mixed breed dogs suffering from retinal atrophy (RA) and showing symptoms of progressive retinal atrophy (PRA), with the use of SD-OCT. The study was performed on 50 dogs divided into two groups: 25 dogs diagnosed with retinal atrophy (RA) with PRA symptoms aged 1.5-14 years and 25 healthy dogs aged 2-12 years.

View Article and Find Full Text PDF

Background: Human immunodeficiency virus (HIV) is a lentivirus. It is transmitted through sexual intercourse, shared intravenous drugs, contaminated needle use, blood transfusion, and mother-to-child transmission. Of the patients with HIV, 50%-75% have ocular manifestations and this may be the primary presentation.

View Article and Find Full Text PDF

Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!