Glycosylation at the fetomaternal interface: does the glycocode play a critical role in implantation?

Glycoconj J

Maternal and Fetal Health Research Group, School of Clinical and Laboratory Sciences, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester, M13 0JH, UK.

Published: April 2009

During pregnancy, the heavily glycosylated surfaces of the implanting blastocyst and maternal uterine epithelium interact in a highly controlled and specific manner. Examination of this interface in species that show interdigitation of embryonic and maternal surfaces (epitheliochorial placentation) shows that each has its own particular pattern of glycosylation or glycotype, and that closely related and/or interbreeding species e.g. horse and donkey or llama and guanaco, have very similar glycotypes. Implantation of interspecies hybrids is facilitated, when the blastocyst has an outer cell layer bearing glycans that are compatible with the maternal host. We refer to this mutual compatibility as a glycocode. The probability that hybrid embryo glycotypes differ from those normally associated with the host species may account for the high pregnancy failure rates seen in interspecies breeding. We suggest the maternal host selects between genotypically distinct embryos, and this selection depends partly on cell surface glycosylation. We infer that the glycocode plays a critical role in implantation, for if the survival of modified genotypes results in fitter offspring with altered placental glycosylation, selection pressure downstream may in turn act to drive adaptations in the maternal surface glycotype to produce a complementary glycocode, thus leading eventually to the creation of new species. We speculate that glycan microheterogeneity plays a specific role in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-008-9152-6DOI Listing

Publication Analysis

Top Keywords

critical role
8
maternal host
8
maternal
5
glycosylation
4
glycosylation fetomaternal
4
fetomaternal interface
4
glycocode
4
interface glycocode
4
glycocode play
4
play critical
4

Similar Publications

Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

Oxidative stress in critically ill neonatal foals.

J Vet Intern Med

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.

Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.

Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.

View Article and Find Full Text PDF

A CRISPR-Cas and Argonaute-Driven Two-Factor Authentication Strategy for Information Security.

ACS Nano

January 2025

Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.

The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Argonaute.

View Article and Find Full Text PDF

Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!