The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556007PMC
http://dx.doi.org/10.1074/jbc.M804215200DOI Listing

Publication Analysis

Top Keywords

ligand binding
12
mycobacterium tuberculosis
12
water molecule
12
heme iron
12
truncated hemoglobin
8
m-1 s-1
8
binding heme
8
molecule stabilized
8
heme
6
water
6

Similar Publications

Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response.

View Article and Find Full Text PDF

Fine-tuning probes for fluorescence polarization binding assays of bivalent ligands against polo-like kinase 1 using full-length protein.

Bioorg Med Chem

December 2024

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.

Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function.

View Article and Find Full Text PDF

Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

Comput Biol Med

January 2025

Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt. Electronic address:

Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!