The antimicrobial effects of a new benzylamine, ME-93 (N-methyl-3,5-dichloro-benzylamine hydrochloride), alone and in combination with dapsone and rifampicin, have been evaluated in vitro in cell-free culture system and in vivo in mouse foot pad system. Even at 50 micrograms/ml, ME-93 did not completely inhibit the in vitro growth of M. leprae, and the effects were bacteriostatic. However, there was a synergism when ME-93 was combined with rifampicin, and the effects were bactericidal. Similar findings were also obtained in the mouse foot pad system. Thus, there is a new drug that needs further attention in the chemotherapy of leprosy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

n-methyl-35-dichloro-benzylamine hydrochloride
8
mouse foot
8
foot pad
8
pad system
8
vitro vivo
4
effects
4
vivo effects
4
effects n-methyl-35-dichloro-benzylamine
4
hydrochloride mycobacterium
4
mycobacterium leprae
4

Similar Publications

Repeated administration of a subanesthetic dose of ketamine results in impaired motor and cognitive behavior and differential expression of hippocampal P2X1 and P2X7 receptors in adult mice.

Behav Brain Res

January 2025

Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:

Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).

View Article and Find Full Text PDF

A Clinical Drug as the Three-Photon Fluorescence Probe for In Vivo Microscopic Imaging of Mouse Kidney.

J Biophotonics

January 2025

State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.

Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney.

View Article and Find Full Text PDF

Purpose: The primary objectives of this trial were aimed at exploring the pharmacokinetic profiles and the human bioequivalence of an intravenous liposomal injection of doxorubicin hydrochloride in comparison with a reference formulation in Chinese patients diagnosed with metastatic breast cancer.

Methods: To achieve these goals, the trial employed a randomized, open-label, two-formulation crossover dosing strategy among Chinese patients with metastatic breast cancer. Pharmacokinetic (PK) evaluation was conducted through the collection of blood samples, and the liquid chromatography tandem mass spectrometry (LC/MS/MS) method was leveraged to quantify plasma concentrations of both liposome-encapsulated doxorubicin and non-encapsulated doxorubicin in patients.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).

View Article and Find Full Text PDF

A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.

J Mater Chem B

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.

Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!