[Roles of p38 and ERK signaling pathway in cell apoptosis induced by UVB irradiation].

Nan Fang Yi Ke Da Xue Xue Bao

Department of Radiation Medicine, School of Public Hygiene and Tropical Medicine, Southern Medical University, Guangzhou 510515, China.

Published: July 2008

Objective: To explore the involvement of p38 and ERK signal transduction pathways in UVB-induced cell apoptosis.

Methods: HaCat cells were exposed to UVB irradiation for 1, 3, 5, 10, and 15 min, respectively, after which the cell survival was assessed using MTT assay, and the cell apoptosis observed under fluorescent microscope with Hoechst staining. Western blotting was used to examine the possible signal transduction pathway involved in the cell apoptosis following the exposures.

Results: For the same incubation time following the exposure, the cell survival rate decreased gradually with the increase of UVB irradiation dose. At a fixed UVB irradiation dose, prolonged cell incubation following the exposure resulted in decreased cell survival rate, which, however, began to increase after the minimum rate was reached. At different UVB doses, cell exposure for 5 min caused the highest cell apoptosis rate, which peaked at 12 h during the post-irradiation incubation. The expressions of p38 and p53 were significantly decreased while p44/42 expression remained unchanged in the exposed cells.

Conclusion: UVB irradiation can induce growth inhibition and apoptosis of HaCat cells in a dose- and time-dependent manner, and p38 pathway other than ERK pathway is probably involved in UVB-induced cell apoptosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell apoptosis
20
uvb irradiation
16
cell survival
12
cell
11
p38 erk
8
signal transduction
8
uvb-induced cell
8
hacat cells
8
pathway involved
8
survival rate
8

Similar Publications

Probing the functional constraints of influenza A virus NEP by deep mutational scanning.

Cell Rep

January 2025

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.

View Article and Find Full Text PDF

Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.

Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!